ragtim-bot / app.py
raktimhugging's picture
Update app.py
c6792e2 verified
raw
history blame
33 kB
import gradio as gr
import json
import numpy as np
from transformers import pipeline, AutoTokenizer, AutoModel
import torch
import os
from typing import List, Dict, Any
import time
import requests
import re
import math
from collections import defaultdict, Counter
# Configure device
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
class HybridSearchRAGBot:
def __init__(self):
self.embedder = None
self.knowledge_base = []
self.embeddings = []
# BM25 components
self.term_frequencies = {} # doc_id -> {term: frequency}
self.document_frequency = {} # term -> number of docs containing term
self.document_lengths = {} # doc_id -> document length
self.average_doc_length = 0
self.total_documents = 0
# BM25 parameters
self.k1 = 1.5 # Controls term frequency saturation
self.b = 0.75 # Controls document length normalization
self.initialize_models()
self.load_markdown_knowledge_base()
self.build_bm25_index()
def initialize_models(self):
"""Initialize the embedding model"""
try:
print("Loading embedding model...")
self.embedder = pipeline(
'feature-extraction',
'sentence-transformers/all-MiniLM-L6-v2',
device=0 if device == "cuda" else -1
)
print("βœ… Embedding model loaded successfully")
except Exception as e:
print(f"❌ Error loading embedding model: {e}")
raise e
def load_markdown_knowledge_base(self):
"""Load knowledge base from markdown files"""
print("Loading knowledge base from markdown files...")
# Reset knowledge base
self.knowledge_base = []
# Load all markdown files
markdown_files = [
'about.md',
'research_details.md',
'publications_detailed.md',
'skills_expertise.md',
'experience_detailed.md',
'statistics.md'
]
for filename in markdown_files:
try:
if os.path.exists(filename):
with open(filename, 'r', encoding='utf-8') as f:
content = f.read()
self.process_markdown_file(content, filename)
print(f"βœ… Loaded {filename}")
else:
print(f"⚠️ File not found: {filename}")
except Exception as e:
print(f"❌ Error loading {filename}: {e}")
# Generate embeddings for knowledge base
print("Generating embeddings for knowledge base...")
self.embeddings = []
for i, doc in enumerate(self.knowledge_base):
try:
# Truncate content to avoid token limit issues
content = doc["content"][:500] # Limit to 500 characters
embedding = self.embedder(content, return_tensors="pt")
# Convert to numpy and flatten
embedding_np = embedding[0].mean(dim=0).detach().cpu().numpy()
self.embeddings.append(embedding_np)
except Exception as e:
print(f"Error generating embedding for doc {doc['id']}: {e}")
# Fallback to zero embedding
self.embeddings.append(np.zeros(384))
self.total_documents = len(self.knowledge_base)
print(f"βœ… Knowledge base loaded with {len(self.knowledge_base)} documents")
def process_markdown_file(self, content: str, filename: str):
"""Process a markdown file and extract sections"""
# Determine file type and priority
file_type_map = {
'about.md': ('about', 10),
'research_details.md': ('research', 9),
'publications_detailed.md': ('publications', 8),
'skills_expertise.md': ('skills', 7),
'experience_detailed.md': ('experience', 8),
'statistics.md': ('statistics', 9)
}
file_type, priority = file_type_map.get(filename, ('general', 5))
# Split content into sections
sections = self.split_markdown_into_sections(content)
for section in sections:
if len(section['content'].strip()) > 100: # Only process substantial content
doc = {
"id": f"{filename}_{section['title']}_{len(self.knowledge_base)}",
"content": section['content'],
"metadata": {
"type": file_type,
"priority": priority,
"section": section['title'],
"source": filename
}
}
self.knowledge_base.append(doc)
def split_markdown_into_sections(self, content: str) -> List[Dict[str, str]]:
"""Split markdown content into sections based on headers"""
sections = []
lines = content.split('\n')
current_section = {'title': 'Introduction', 'content': ''}
for line in lines:
# Check if line is a header
if line.startswith('#'):
# Save previous section if it has content
if current_section['content'].strip():
sections.append(current_section.copy())
# Start new section
header_level = len(line) - len(line.lstrip('#'))
title = line.lstrip('#').strip()
current_section = {
'title': title,
'content': line + '\n'
}
else:
current_section['content'] += line + '\n'
# Add the last section
if current_section['content'].strip():
sections.append(current_section)
return sections
def tokenize(self, text: str) -> List[str]:
"""Tokenize text for BM25"""
# Convert to lowercase and remove punctuation
text = re.sub(r'[^\w\s]', ' ', text.lower())
# Split into words and filter out short words and stop words
words = [word for word in text.split() if len(word) > 2 and not self.is_stop_word(word)]
return words
def is_stop_word(self, word: str) -> bool:
"""Check if word is a stop word"""
stop_words = {
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by',
'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did',
'will', 'would', 'could', 'should', 'may', 'might', 'can', 'this', 'that', 'these', 'those',
'from', 'up', 'out', 'down', 'off', 'over', 'under', 'again', 'further', 'then', 'once'
}
return word in stop_words
def build_bm25_index(self):
"""Build BM25 index for all documents"""
print("Building BM25 index...")
# Reset indexes
self.term_frequencies = {}
self.document_frequency = defaultdict(int)
self.document_lengths = {}
total_length = 0
# First pass: calculate term frequencies and document lengths
for doc in self.knowledge_base:
doc_id = doc['id']
terms = self.tokenize(doc['content'])
# Calculate term frequencies for this document
term_freq = Counter(terms)
self.term_frequencies[doc_id] = dict(term_freq)
# Store document length
doc_length = len(terms)
self.document_lengths[doc_id] = doc_length
total_length += doc_length
# Update document frequencies
unique_terms = set(terms)
for term in unique_terms:
self.document_frequency[term] += 1
# Calculate average document length
self.average_doc_length = total_length / self.total_documents if self.total_documents > 0 else 0
print(f"βœ… BM25 index built: {len(self.document_frequency)} unique terms, avg doc length: {self.average_doc_length:.1f}")
def calculate_bm25_score(self, term: str, doc_id: str) -> float:
"""Calculate BM25 score for a term in a document"""
# Get term frequency in document
tf = self.term_frequencies.get(doc_id, {}).get(term, 0)
if tf == 0:
return 0.0
# Get document frequency and document length
df = self.document_frequency.get(term, 1)
doc_length = self.document_lengths.get(doc_id, 0)
# Calculate IDF: log((N - df + 0.5) / (df + 0.5))
idf = math.log((self.total_documents - df + 0.5) / (df + 0.5))
# Calculate BM25 score
numerator = tf * (self.k1 + 1)
denominator = tf + self.k1 * (1 - self.b + self.b * (doc_length / self.average_doc_length))
return idf * (numerator / denominator)
def bm25_search(self, query: str, top_k: int = 10) -> List[Dict]:
"""Perform BM25 search"""
query_terms = self.tokenize(query)
if not query_terms:
return []
scores = {}
# Calculate BM25 score for each document
for doc in self.knowledge_base:
doc_id = doc['id']
score = 0.0
for term in query_terms:
score += self.calculate_bm25_score(term, doc_id)
if score > 0:
# Apply priority boost
priority_boost = 1 + (doc['metadata']['priority'] / 50)
final_score = score * priority_boost
scores[doc_id] = {
'document': doc,
'score': final_score,
'search_type': 'bm25'
}
# Sort by score and return top_k
sorted_results = sorted(scores.values(), key=lambda x: x['score'], reverse=True)
return sorted_results[:top_k]
def cosine_similarity(self, a, b):
"""Calculate cosine similarity between two vectors"""
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
def vector_search(self, query: str, top_k: int = 10) -> List[Dict]:
"""Perform vector similarity search"""
try:
# Generate query embedding
query_embedding = self.embedder(query[:500], return_tensors="pt") # Truncate query
query_vector = query_embedding[0].mean(dim=0).detach().cpu().numpy()
# Calculate similarities
similarities = []
for i, doc_embedding in enumerate(self.embeddings):
if doc_embedding is not None and len(doc_embedding) > 0:
similarity = self.cosine_similarity(query_vector, doc_embedding)
# Apply priority boost
priority_boost = 1 + (self.knowledge_base[i]['metadata']['priority'] / 100)
final_score = similarity * priority_boost
similarities.append({
'document': self.knowledge_base[i],
'score': float(final_score),
'search_type': 'vector'
})
# Sort by similarity and return top_k
similarities.sort(key=lambda x: x['score'], reverse=True)
return similarities[:top_k]
except Exception as e:
print(f"Error in vector search: {e}")
return []
def hybrid_search(self, query: str, top_k: int = 10, vector_weight: float = 0.6, bm25_weight: float = 0.4) -> List[Dict]:
"""Perform hybrid search combining vector and BM25 results"""
try:
# Get results from both search methods
vector_results = self.vector_search(query, top_k * 2) # Get more results for better fusion
bm25_results = self.bm25_search(query, top_k * 2)
# Normalize scores to [0, 1] range
if vector_results:
max_vector_score = max(r['score'] for r in vector_results)
if max_vector_score > 0:
for result in vector_results:
result['normalized_score'] = result['score'] / max_vector_score
else:
for result in vector_results:
result['normalized_score'] = 0
if bm25_results:
max_bm25_score = max(r['score'] for r in bm25_results)
if max_bm25_score > 0:
for result in bm25_results:
result['normalized_score'] = result['score'] / max_bm25_score
else:
for result in bm25_results:
result['normalized_score'] = 0
# Combine results
combined_scores = {}
# Add vector results
for result in vector_results:
doc_id = result['document']['id']
combined_scores[doc_id] = {
'document': result['document'],
'vector_score': result['normalized_score'],
'bm25_score': 0.0,
'search_type': 'vector'
}
# Add BM25 results
for result in bm25_results:
doc_id = result['document']['id']
if doc_id in combined_scores:
combined_scores[doc_id]['bm25_score'] = result['normalized_score']
combined_scores[doc_id]['search_type'] = 'hybrid'
else:
combined_scores[doc_id] = {
'document': result['document'],
'vector_score': 0.0,
'bm25_score': result['normalized_score'],
'search_type': 'bm25'
}
# Calculate final hybrid scores
final_results = []
for doc_id, data in combined_scores.items():
hybrid_score = (vector_weight * data['vector_score']) + (bm25_weight * data['bm25_score'])
final_results.append({
'document': data['document'],
'score': hybrid_score,
'vector_score': data['vector_score'],
'bm25_score': data['bm25_score'],
'search_type': data['search_type']
})
# Sort by hybrid score and return top_k
final_results.sort(key=lambda x: x['score'], reverse=True)
return final_results[:top_k]
except Exception as e:
print(f"Error in hybrid search: {e}")
# Fallback to vector search only
return self.vector_search(query, top_k)
def search_knowledge_base(self, query: str, top_k: int = 5, search_type: str = "hybrid") -> List[Dict]:
"""Search the knowledge base using specified method"""
if search_type == "vector":
return self.vector_search(query, top_k)
elif search_type == "bm25":
return self.bm25_search(query, top_k)
else: # hybrid
return self.hybrid_search(query, top_k)
# Initialize the bot
print("Initializing Hybrid Search RAGtim Bot...")
bot = HybridSearchRAGBot()
def search_api(query, top_k=5, search_type="hybrid", vector_weight=0.6, bm25_weight=0.4):
"""API endpoint for hybrid search functionality"""
try:
if search_type == "hybrid":
results = bot.hybrid_search(query, top_k, vector_weight, bm25_weight)
else:
results = bot.search_knowledge_base(query, top_k, search_type)
return {
"results": results,
"query": query,
"top_k": top_k,
"search_type": search_type,
"total_documents": len(bot.knowledge_base),
"search_parameters": {
"vector_weight": vector_weight if search_type == "hybrid" else None,
"bm25_weight": bm25_weight if search_type == "hybrid" else None,
"bm25_k1": bot.k1,
"bm25_b": bot.b
}
}
except Exception as e:
print(f"Error in search API: {e}")
return {"error": str(e), "results": []}
def get_stats_api():
"""API endpoint for knowledge base statistics"""
try:
# Calculate document distribution by type
doc_types = {}
sections_by_file = {}
for doc in bot.knowledge_base:
doc_type = doc["metadata"]["type"]
source_file = doc["metadata"]["source"]
doc_types[doc_type] = doc_types.get(doc_type, 0) + 1
sections_by_file[source_file] = sections_by_file.get(source_file, 0) + 1
return {
"total_documents": len(bot.knowledge_base),
"document_types": doc_types,
"sections_by_file": sections_by_file,
"model_name": "sentence-transformers/all-MiniLM-L6-v2",
"embedding_dimension": 384,
"search_capabilities": [
"Hybrid Search (Vector + BM25)",
"Semantic Vector Search",
"BM25 Keyword Search",
"GPU Accelerated",
"Transformer Embeddings"
],
"bm25_parameters": {
"k1": bot.k1,
"b": bot.b,
"unique_terms": len(bot.document_frequency),
"average_doc_length": bot.average_doc_length
},
"backend_type": "Hugging Face Space with Hybrid Search",
"knowledge_sources": list(sections_by_file.keys()),
"status": "healthy"
}
except Exception as e:
print(f"Error in get_stats_api: {e}")
return {
"error": str(e),
"status": "error",
"total_documents": 0,
"search_capabilities": ["Error"]
}
def chat_interface(message, history):
"""Chat interface with hybrid search"""
if not message.strip():
return "Please ask me something about Raktim Mondol! I use hybrid search combining semantic similarity and keyword matching for the best results."
try:
# Use hybrid search by default
search_results = bot.hybrid_search(message, top_k=6)
if search_results:
# Build comprehensive response
response_parts = []
response_parts.append(f"πŸ” **Hybrid Search Results** (Vector + BM25 combination, found {len(search_results)} relevant sections):\n")
# Use the best match as primary response
best_match = search_results[0]
response_parts.append(f"**Primary Answer** (Hybrid Score: {best_match['score']:.3f}):")
response_parts.append(f"πŸ“„ Source: {best_match['document']['metadata']['source']} - {best_match['document']['metadata']['section']}")
response_parts.append(f"πŸ” Search Type: {best_match['search_type'].upper()}")
# Show score breakdown for hybrid results
if 'vector_score' in best_match and 'bm25_score' in best_match:
response_parts.append(f"πŸ“Š Vector Score: {best_match['vector_score']:.3f} | BM25 Score: {best_match['bm25_score']:.3f}")
response_parts.append(f"\n{best_match['document']['content']}\n")
# Add additional context if available
if len(search_results) > 1:
response_parts.append("**Additional Context:**")
for i, result in enumerate(search_results[1:3], 1): # Show up to 2 additional results
section_info = f"{result['document']['metadata']['source']} - {result['document']['metadata']['section']}"
search_info = f"({result['search_type'].upper()}, Score: {result['score']:.3f})"
response_parts.append(f"{i}. {section_info} {search_info}")
# Add a brief excerpt
excerpt = result['document']['content'][:200] + "..." if len(result['document']['content']) > 200 else result['document']['content']
response_parts.append(f" {excerpt}\n")
response_parts.append("\nπŸ€– **Hybrid Search Technology:**")
response_parts.append("β€’ **Vector Search**: Semantic similarity using transformer embeddings")
response_parts.append("β€’ **BM25 Search**: Advanced keyword ranking with TF-IDF")
response_parts.append("β€’ **Fusion**: Weighted combination for optimal relevance")
response_parts.append("\n[Note: This demonstrates hybrid search results. In production, these would be passed to an LLM for natural response generation.]")
return "\n".join(response_parts)
else:
return "I don't have specific information about that topic in my knowledge base. Could you please ask something else about Raktim Mondol?"
except Exception as e:
print(f"Error in chat interface: {e}")
return "I'm sorry, I encountered an error while processing your question. Please try again."
# Create Gradio interface
print("Creating Gradio interface...")
# Custom CSS for better styling
css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.search-type-radio .wrap {
display: flex;
gap: 10px;
}
.search-weights {
background: #f0f0f0;
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
"""
# Create the main chat interface
with gr.Blocks(
title="πŸ”₯ Hybrid Search RAGtim Bot",
css=css,
theme=gr.themes.Soft(
primary_hue="green",
secondary_hue="blue",
neutral_hue="slate"
)
) as chat_demo:
gr.Markdown(f"""
# πŸ”₯ Hybrid Search RAGtim Bot - Advanced Search Technology
**πŸš€ Hybrid Search System**: This Space implements **true hybrid search** combining:
- 🧠 **Semantic Vector Search**: Transformer embeddings for conceptual similarity
- πŸ” **BM25 Keyword Search**: Advanced TF-IDF ranking for exact term matching
- βš–οΈ **Intelligent Fusion**: Weighted combination for optimal relevance
**πŸ“š Knowledge Base**: **{len(bot.knowledge_base)} sections** from comprehensive markdown files:
- πŸ“„ **about.md** - Personal info, contact, professional summary
- πŸ”¬ **research_details.md** - Research projects, methodologies, innovations
- πŸ“š **publications_detailed.md** - Publications with technical details
- πŸ’» **skills_expertise.md** - Technical skills, LLM expertise, tools
- πŸ’Ό **experience_detailed.md** - Professional experience, teaching
- πŸ“Š **statistics.md** - Statistical methods, biostatistics expertise
**πŸ”§ Search Parameters**:
- **BM25 Parameters**: k1={bot.k1}, b={bot.b}
- **Vocabulary**: {len(bot.document_frequency)} unique terms
- **Average Document Length**: {bot.average_doc_length:.1f} words
- **Embedding Model**: sentence-transformers/all-MiniLM-L6-v2 (384-dim)
**πŸ’‘ Try Different Search Types**:
- **Hybrid** (Recommended): Best of both semantic and keyword search
- **Vector**: Pure semantic similarity for conceptual queries
- **BM25**: Pure keyword matching for specific terms
**Ask me anything about Raktim Mondol's research, expertise, and background!**
""")
chatbot = gr.Chatbot(
height=500,
show_label=False,
container=True,
type="messages"
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask about Raktim's research, LLM expertise, publications, statistical methods...",
container=False,
scale=7,
show_label=False
)
submit_btn = gr.Button("πŸ” Hybrid Search", scale=1)
# Example buttons
with gr.Row():
examples = [
"What is Raktim's LLM and RAG research?",
"Tell me about BioFusionNet statistical methods",
"What are his multimodal AI capabilities?",
"Describe his biostatistics expertise"
]
for example in examples:
gr.Button(example, size="sm").click(
lambda x=example: x, outputs=msg
)
def respond(message, history):
if not message.strip():
return history, ""
# Add user message to history
history.append({"role": "user", "content": message})
# Get bot response
bot_response = chat_interface(message, history)
# Add bot response to history
history.append({"role": "assistant", "content": bot_response})
return history, ""
submit_btn.click(respond, [msg, chatbot], [chatbot, msg])
msg.submit(respond, [msg, chatbot], [chatbot, msg])
# Create advanced search interface
with gr.Blocks(title="πŸ”§ Advanced Hybrid Search") as search_demo:
gr.Markdown("# πŸ”§ Advanced Hybrid Search Configuration")
gr.Markdown("Fine-tune the hybrid search parameters and compare different search methods")
with gr.Row():
with gr.Column(scale=2):
search_input = gr.Textbox(
label="Search Query",
placeholder="Enter your search query about Raktim Mondol..."
)
with gr.Row():
search_type = gr.Radio(
choices=["hybrid", "vector", "bm25"],
value="hybrid",
label="Search Method",
elem_classes=["search-type-radio"]
)
top_k_slider = gr.Slider(
minimum=1,
maximum=15,
value=5,
step=1,
label="Top K Results"
)
# Hybrid search weights (only shown when hybrid is selected)
with gr.Group(visible=True) as weight_group:
gr.Markdown("**Hybrid Search Weights**")
vector_weight = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.6,
step=0.1,
label="Vector Weight (Semantic)"
)
bm25_weight = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.4,
step=0.1,
label="BM25 Weight (Keyword)"
)
with gr.Column(scale=1):
gr.Markdown("**Search Method Guide:**")
gr.Markdown("""
**πŸ”₯ Hybrid**: Combines semantic + keyword
- Best for most queries
- Balances meaning and exact terms
**🧠 Vector**: Pure semantic similarity
- Good for conceptual questions
- Finds related concepts
**πŸ” BM25**: Pure keyword matching
- Good for specific terms
- Traditional search ranking
""")
search_output = gr.JSON(label="Hybrid Search Results", height=400)
search_btn = gr.Button("πŸ” Search with Custom Parameters", variant="primary")
def update_weights_visibility(search_type):
return gr.Group(visible=(search_type == "hybrid"))
search_type.change(update_weights_visibility, inputs=[search_type], outputs=[weight_group])
def normalize_weights(vector_w, bm25_w):
total = vector_w + bm25_w
if total > 0:
return vector_w / total, bm25_w / total
return 0.6, 0.4
def advanced_search(query, search_type, top_k, vector_w, bm25_w):
# Normalize weights
vector_weight, bm25_weight = normalize_weights(vector_w, bm25_w)
return search_api(query, top_k, search_type, vector_weight, bm25_weight)
search_btn.click(
advanced_search,
inputs=[search_input, search_type, top_k_slider, vector_weight, bm25_weight],
outputs=search_output
)
# Create stats interface
with gr.Blocks(title="πŸ“Š System Statistics") as stats_demo:
gr.Markdown("# πŸ“Š Hybrid Search System Statistics")
gr.Markdown("Detailed information about the knowledge base and search capabilities")
stats_output = gr.JSON(label="System Statistics", height=500)
stats_btn = gr.Button("πŸ“Š Get System Statistics", variant="primary")
stats_btn.click(
get_stats_api,
inputs=[],
outputs=stats_output
)
# Combine interfaces using TabbedInterface
demo = gr.TabbedInterface(
[chat_demo, search_demo, stats_demo],
["πŸ’¬ Hybrid Chat", "πŸ”§ Advanced Search", "πŸ“Š Statistics"],
title="πŸ”₯ Hybrid Search RAGtim Bot - Vector + BM25 Fusion"
)
# Add API routes for external access
def api_search(request: gr.Request):
"""Handle API search requests"""
try:
# Get query parameters
query = request.query_params.get('query', '')
top_k = int(request.query_params.get('top_k', 5))
search_type = request.query_params.get('search_type', 'hybrid')
vector_weight = float(request.query_params.get('vector_weight', 0.6))
bm25_weight = float(request.query_params.get('bm25_weight', 0.4))
if not query:
return {"error": "Query parameter is required"}
return search_api(query, top_k, search_type, vector_weight, bm25_weight)
except Exception as e:
return {"error": str(e)}
def api_stats(request: gr.Request):
"""Handle API stats requests"""
try:
return get_stats_api()
except Exception as e:
return {"error": str(e)}
# Mount API endpoints
demo.mount_gradio_app = lambda: None # Disable default mounting
if __name__ == "__main__":
print("πŸš€ Launching Hybrid Search RAGtim Bot...")
print(f"πŸ“š Loaded {len(bot.knowledge_base)} sections from markdown files")
print(f"πŸ” BM25 index: {len(bot.document_frequency)} unique terms")
print(f"🧠 Vector embeddings: {len(bot.embeddings)} documents")
print("πŸ”₯ Hybrid search ready: Semantic + Keyword fusion!")
# Create a custom app with API routes
import uvicorn
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
app = FastAPI()
@app.get("/api/search")
async def search_endpoint(request: Request):
try:
query = request.query_params.get('query', '')
top_k = int(request.query_params.get('top_k', 5))
search_type = request.query_params.get('search_type', 'hybrid')
vector_weight = float(request.query_params.get('vector_weight', 0.6))
bm25_weight = float(request.query_params.get('bm25_weight', 0.4))
if not query:
return JSONResponse({"error": "Query parameter is required"}, status_code=400)
result = search_api(query, top_k, search_type, vector_weight, bm25_weight)
return JSONResponse(result)
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.post("/api/search")
async def search_endpoint_post(request: Request):
try:
body = await request.json()
query = body.get('query', '')
top_k = body.get('top_k', 5)
search_type = body.get('search_type', 'hybrid')
vector_weight = body.get('vector_weight', 0.6)
bm25_weight = body.get('bm25_weight', 0.4)
if not query:
return JSONResponse({"error": "Query is required"}, status_code=400)
result = search_api(query, top_k, search_type, vector_weight, bm25_weight)
return JSONResponse(result)
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
@app.get("/api/stats")
async def stats_endpoint():
try:
result = get_stats_api()
return JSONResponse(result)
except Exception as e:
return JSONResponse({"error": str(e)}, status_code=500)
# Mount Gradio app
app = gr.mount_gradio_app(app, demo, path="/")
# For Hugging Face Spaces, just launch the demo
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)