Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import json | |
from transformers import pipeline | |
import os | |
# Initialize the embedding model | |
embedder = pipeline('feature-extraction', 'sentence-transformers/all-MiniLM-L6-v2') | |
# Your knowledge base and search logic here | |
def search_knowledge_base(query): | |
# Implement your search logic | |
return f"Search results for: {query}" | |
def chat_interface(message, history): | |
# Your RAG logic here | |
response = search_knowledge_base(message) | |
return response | |
# Create Gradio interface | |
iface = gr.ChatInterface( | |
fn=chat_interface, | |
title="RAGtim Bot - Raktim's AI Assistant", | |
description="Ask me anything about Raktim Mondol's research, experience, and expertise!" | |
) | |
if __name__ == "__main__": | |
iface.launch() |