Spaces:
Sleeping
Sleeping
Delete skills_expertise.md
Browse files- skills_expertise.md +0 -142
skills_expertise.md
DELETED
@@ -1,142 +0,0 @@
|
|
1 |
-
# Technical Skills and Expertise
|
2 |
-
|
3 |
-
## Deep Learning and Machine Learning
|
4 |
-
|
5 |
-
### Core Frameworks
|
6 |
-
- **PyTorch**: Advanced proficiency in model development, custom layers, and distributed training
|
7 |
-
- **TensorFlow**: Experience with TensorFlow 2.x, Keras, and TensorFlow Serving
|
8 |
-
- **Hugging Face Transformers**: Fine-tuning, model deployment, and custom tokenizers
|
9 |
-
- **scikit-learn**: Classical ML algorithms, preprocessing, and model evaluation
|
10 |
-
|
11 |
-
### Specialized Techniques
|
12 |
-
- **Transfer Learning**: Pre-trained model adaptation, domain adaptation
|
13 |
-
- **Attention Mechanisms**: Self-attention, cross-attention, multi-head attention
|
14 |
-
- **Adversarial Training**: GANs, adversarial autoencoders, robust training
|
15 |
-
- **Multi-task Learning**: Joint optimization, task balancing, shared representations
|
16 |
-
- **Meta-Learning**: Few-shot learning, model-agnostic meta-learning
|
17 |
-
|
18 |
-
## Large Language Models and NLP
|
19 |
-
|
20 |
-
### LLM Technologies
|
21 |
-
- **Parameter-Efficient Fine-tuning**: LoRA, QLoRA, AdaLoRA, Prefix tuning
|
22 |
-
- **Quantization**: GPTQ, GGUF, 8-bit and 4-bit quantization
|
23 |
-
- **Model Optimization**: Pruning, distillation, efficient architectures
|
24 |
-
- **Prompt Engineering**: Chain-of-thought, few-shot prompting, instruction tuning
|
25 |
-
|
26 |
-
### NLP Applications
|
27 |
-
- **Text Generation**: Controlled generation, style transfer, summarization
|
28 |
-
- **Information Extraction**: Named entity recognition, relation extraction
|
29 |
-
- **Question Answering**: Reading comprehension, open-domain QA
|
30 |
-
- **Sentiment Analysis**: Aspect-based sentiment, emotion detection
|
31 |
-
|
32 |
-
## Computer Vision and Medical Imaging
|
33 |
-
|
34 |
-
### Vision Architectures
|
35 |
-
- **Convolutional Networks**: ResNet, DenseNet, EfficientNet, Vision Transformers
|
36 |
-
- **Object Detection**: YOLO, R-CNN family, DETR
|
37 |
-
- **Segmentation**: U-Net, Mask R-CNN, Segment Anything Model (SAM)
|
38 |
-
- **Medical Imaging**: Specialized architectures for histopathology, radiology
|
39 |
-
|
40 |
-
### Image Processing
|
41 |
-
- **Preprocessing**: Normalization, augmentation, color space conversion
|
42 |
-
- **Feature Extraction**: SIFT, HOG, deep features
|
43 |
-
- **Registration**: Image alignment, geometric transformations
|
44 |
-
- **Quality Assessment**: Blur detection, artifact identification
|
45 |
-
|
46 |
-
## Multimodal AI and Fusion
|
47 |
-
|
48 |
-
### Multimodal Architectures
|
49 |
-
- **Vision-Language Models**: CLIP, BLIP, LLaVA, DALL-E
|
50 |
-
- **Fusion Strategies**: Early fusion, late fusion, attention-based fusion
|
51 |
-
- **Cross-modal Retrieval**: Image-text matching, semantic search
|
52 |
-
- **Multimodal Generation**: Text-to-image, image captioning
|
53 |
-
|
54 |
-
### Data Integration
|
55 |
-
- **Heterogeneous Data**: Combining images, text, tabular data
|
56 |
-
- **Temporal Fusion**: Time-series integration, sequential modeling
|
57 |
-
- **Graph Neural Networks**: Relational data modeling, knowledge graphs
|
58 |
-
|
59 |
-
## Retrieval-Augmented Generation (RAG)
|
60 |
-
|
61 |
-
### Vector Databases
|
62 |
-
- **FAISS**: Efficient similarity search, index optimization
|
63 |
-
- **ChromaDB**: Document storage and retrieval
|
64 |
-
- **Weaviate**: Vector search with filtering
|
65 |
-
- **Milvus**: Scalable vector database management
|
66 |
-
|
67 |
-
### Retrieval Techniques
|
68 |
-
- **Dense Retrieval**: Bi-encoder architectures, contrastive learning
|
69 |
-
- **Sparse Retrieval**: BM25, TF-IDF, keyword matching
|
70 |
-
- **Hybrid Search**: Combining dense and sparse methods
|
71 |
-
- **Re-ranking**: Cross-encoder models, relevance scoring
|
72 |
-
|
73 |
-
### RAG Optimization
|
74 |
-
- **Chunk Strategies**: Document segmentation, overlap handling
|
75 |
-
- **Embedding Models**: Sentence transformers, domain-specific embeddings
|
76 |
-
- **Query Enhancement**: Query expansion, reformulation
|
77 |
-
- **Context Management**: Relevance filtering, context compression
|
78 |
-
|
79 |
-
## Bioinformatics and Computational Biology
|
80 |
-
|
81 |
-
### Genomics
|
82 |
-
- **Sequence Analysis**: Alignment algorithms, variant calling
|
83 |
-
- **Gene Expression**: RNA-seq analysis, differential expression
|
84 |
-
- **Pathway Analysis**: Enrichment analysis, network biology
|
85 |
-
- **Population Genetics**: GWAS, linkage analysis
|
86 |
-
|
87 |
-
### Proteomics
|
88 |
-
- **Protein Structure**: Structure prediction, folding analysis
|
89 |
-
- **Mass Spectrometry**: Data processing, protein identification
|
90 |
-
- **Protein-Protein Interactions**: Network analysis, functional prediction
|
91 |
-
|
92 |
-
### Systems Biology
|
93 |
-
- **Network Analysis**: Graph theory, centrality measures
|
94 |
-
- **Mathematical Modeling**: Differential equations, stochastic models
|
95 |
-
- **Multi-omics Integration**: Data fusion, pathway reconstruction
|
96 |
-
|
97 |
-
## Cloud Computing and MLOps
|
98 |
-
|
99 |
-
### Cloud Platforms
|
100 |
-
- **AWS**: EC2, S3, SageMaker, Lambda, ECS
|
101 |
-
- **Google Cloud**: Compute Engine, Cloud Storage, Vertex AI
|
102 |
-
- **Azure**: Virtual Machines, Blob Storage, Machine Learning Studio
|
103 |
-
|
104 |
-
### MLOps Tools
|
105 |
-
- **Model Versioning**: MLflow, DVC, Weights & Biases
|
106 |
-
- **Containerization**: Docker, Kubernetes, container orchestration
|
107 |
-
- **CI/CD**: GitHub Actions, Jenkins, automated testing
|
108 |
-
- **Monitoring**: Model drift detection, performance monitoring
|
109 |
-
|
110 |
-
### Distributed Computing
|
111 |
-
- **Parallel Processing**: Multi-GPU training, data parallelism
|
112 |
-
- **Cluster Computing**: Spark, Dask, distributed training
|
113 |
-
- **Resource Management**: SLURM, job scheduling, resource optimization
|
114 |
-
|
115 |
-
## Programming and Software Development
|
116 |
-
|
117 |
-
### Programming Languages
|
118 |
-
- **Python**: Advanced proficiency, scientific computing, web development
|
119 |
-
- **R**: Statistical analysis, bioinformatics packages, visualization
|
120 |
-
- **SQL**: Database design, query optimization, data warehousing
|
121 |
-
- **JavaScript/TypeScript**: Web development, Node.js, React
|
122 |
-
- **Bash/Shell**: System administration, automation scripts
|
123 |
-
|
124 |
-
### Development Tools
|
125 |
-
- **Version Control**: Git, GitHub, collaborative development
|
126 |
-
- **IDEs**: VS Code, PyCharm, Jupyter notebooks
|
127 |
-
- **Documentation**: Sphinx, MkDocs, technical writing
|
128 |
-
- **Testing**: Unit testing, integration testing, test-driven development
|
129 |
-
|
130 |
-
## Research and Academic Skills
|
131 |
-
|
132 |
-
### Research Methodology
|
133 |
-
- **Experimental Design**: Hypothesis testing, statistical power analysis
|
134 |
-
- **Literature Review**: Systematic reviews, meta-analysis
|
135 |
-
- **Peer Review**: Journal reviewing, conference reviewing
|
136 |
-
- **Grant Writing**: Research proposals, funding applications
|
137 |
-
|
138 |
-
### Communication
|
139 |
-
- **Technical Writing**: Research papers, documentation, tutorials
|
140 |
-
- **Presentations**: Conference talks, poster presentations
|
141 |
-
- **Teaching**: Course development, student mentoring
|
142 |
-
- **Collaboration**: Interdisciplinary research, team leadership
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|