import gradio as gr import requests import json from transformers import pipeline import os # Initialize the embedding model embedder = pipeline('feature-extraction', 'sentence-transformers/all-MiniLM-L6-v2') # Your knowledge base and search logic here def search_knowledge_base(query): # Implement your search logic return f"Search results for: {query}" def chat_interface(message, history): # Your RAG logic here response = search_knowledge_base(message) return response # Create Gradio interface iface = gr.ChatInterface( fn=chat_interface, title="RAGtim Bot - Raktim's AI Assistant", description="Ask me anything about Raktim Mondol's research, experience, and expertise!" ) if __name__ == "__main__": iface.launch()