# Technical Skills and Expertise ## Deep Learning and Machine Learning ### Core Frameworks - **PyTorch**: Advanced proficiency in model development, custom layers, and distributed training - **TensorFlow**: Experience with TensorFlow 2.x, Keras, and TensorFlow Serving - **Hugging Face Transformers**: Fine-tuning, model deployment, and custom tokenizers - **scikit-learn**: Classical ML algorithms, preprocessing, and model evaluation ### Specialized Techniques - **Transfer Learning**: Pre-trained model adaptation, domain adaptation - **Attention Mechanisms**: Self-attention, cross-attention, multi-head attention - **Adversarial Training**: GANs, adversarial autoencoders, robust training - **Multi-task Learning**: Joint optimization, task balancing, shared representations - **Meta-Learning**: Few-shot learning, model-agnostic meta-learning ## Large Language Models and NLP ### LLM Technologies - **Parameter-Efficient Fine-tuning**: LoRA, QLoRA, AdaLoRA, Prefix tuning - **Quantization**: GPTQ, GGUF, 8-bit and 4-bit quantization - **Model Optimization**: Pruning, distillation, efficient architectures - **Prompt Engineering**: Chain-of-thought, few-shot prompting, instruction tuning ### NLP Applications - **Text Generation**: Controlled generation, style transfer, summarization - **Information Extraction**: Named entity recognition, relation extraction - **Question Answering**: Reading comprehension, open-domain QA - **Sentiment Analysis**: Aspect-based sentiment, emotion detection ## Computer Vision and Medical Imaging ### Vision Architectures - **Convolutional Networks**: ResNet, DenseNet, EfficientNet, Vision Transformers - **Object Detection**: YOLO, R-CNN family, DETR - **Segmentation**: U-Net, Mask R-CNN, Segment Anything Model (SAM) - **Medical Imaging**: Specialized architectures for histopathology, radiology ### Image Processing - **Preprocessing**: Normalization, augmentation, color space conversion - **Feature Extraction**: SIFT, HOG, deep features - **Registration**: Image alignment, geometric transformations - **Quality Assessment**: Blur detection, artifact identification ## Multimodal AI and Fusion ### Multimodal Architectures - **Vision-Language Models**: CLIP, BLIP, LLaVA, DALL-E - **Fusion Strategies**: Early fusion, late fusion, attention-based fusion - **Cross-modal Retrieval**: Image-text matching, semantic search - **Multimodal Generation**: Text-to-image, image captioning ### Data Integration - **Heterogeneous Data**: Combining images, text, tabular data - **Temporal Fusion**: Time-series integration, sequential modeling - **Graph Neural Networks**: Relational data modeling, knowledge graphs ## Retrieval-Augmented Generation (RAG) ### Vector Databases - **FAISS**: Efficient similarity search, index optimization - **ChromaDB**: Document storage and retrieval - **Weaviate**: Vector search with filtering - **Milvus**: Scalable vector database management ### Retrieval Techniques - **Dense Retrieval**: Bi-encoder architectures, contrastive learning - **Sparse Retrieval**: BM25, TF-IDF, keyword matching - **Hybrid Search**: Combining dense and sparse methods - **Re-ranking**: Cross-encoder models, relevance scoring ### RAG Optimization - **Chunk Strategies**: Document segmentation, overlap handling - **Embedding Models**: Sentence transformers, domain-specific embeddings - **Query Enhancement**: Query expansion, reformulation - **Context Management**: Relevance filtering, context compression ## Bioinformatics and Computational Biology ### Genomics - **Sequence Analysis**: Alignment algorithms, variant calling - **Gene Expression**: RNA-seq analysis, differential expression - **Pathway Analysis**: Enrichment analysis, network biology - **Population Genetics**: GWAS, linkage analysis ### Proteomics - **Protein Structure**: Structure prediction, folding analysis - **Mass Spectrometry**: Data processing, protein identification - **Protein-Protein Interactions**: Network analysis, functional prediction ### Systems Biology - **Network Analysis**: Graph theory, centrality measures - **Mathematical Modeling**: Differential equations, stochastic models - **Multi-omics Integration**: Data fusion, pathway reconstruction ## Cloud Computing and MLOps ### Cloud Platforms - **AWS**: EC2, S3, SageMaker, Lambda, ECS - **Google Cloud**: Compute Engine, Cloud Storage, Vertex AI - **Azure**: Virtual Machines, Blob Storage, Machine Learning Studio ### MLOps Tools - **Model Versioning**: MLflow, DVC, Weights & Biases - **Containerization**: Docker, Kubernetes, container orchestration - **CI/CD**: GitHub Actions, Jenkins, automated testing - **Monitoring**: Model drift detection, performance monitoring ### Distributed Computing - **Parallel Processing**: Multi-GPU training, data parallelism - **Cluster Computing**: Spark, Dask, distributed training - **Resource Management**: SLURM, job scheduling, resource optimization ## Programming and Software Development ### Programming Languages - **Python**: Advanced proficiency, scientific computing, web development - **R**: Statistical analysis, bioinformatics packages, visualization - **SQL**: Database design, query optimization, data warehousing - **JavaScript/TypeScript**: Web development, Node.js, React - **Bash/Shell**: System administration, automation scripts ### Development Tools - **Version Control**: Git, GitHub, collaborative development - **IDEs**: VS Code, PyCharm, Jupyter notebooks - **Documentation**: Sphinx, MkDocs, technical writing - **Testing**: Unit testing, integration testing, test-driven development ## Research and Academic Skills ### Research Methodology - **Experimental Design**: Hypothesis testing, statistical power analysis - **Literature Review**: Systematic reviews, meta-analysis - **Peer Review**: Journal reviewing, conference reviewing - **Grant Writing**: Research proposals, funding applications ### Communication - **Technical Writing**: Research papers, documentation, tutorials - **Presentations**: Conference talks, poster presentations - **Teaching**: Course development, student mentoring - **Collaboration**: Interdisciplinary research, team leadership