ramimu commited on
Commit
76afc42
·
verified ·
1 Parent(s): 3ef349e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +162 -140
app.py CHANGED
@@ -1,154 +1,176 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
  )
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
 
90
  )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
  )
 
 
99
 
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
 
102
  with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
 
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
 
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
 
 
 
 
 
2
  import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig # Example for LLM
4
+ # from diffusers import StableDiffusionPipeline # Example for Diffusion
5
+ from peft import PeftModel
6
+ import accelerate # Often needed for device_map='auto'
7
+ import os
8
+ import time # For basic timing/feedback
9
+
10
+ # --- Global Placeholder (Alternative: Use gr.State for cleaner state management) ---
11
+ # We will use gr.State in the Blocks interface, which is generally preferred.
12
+ # loaded_model = None
13
+ # loaded_tokenizer = None
14
+
15
+ # --- Model Loading Function ---
16
+ def load_models(base_model_id, lora_model_id, progress=gr.Progress(track_tqdm=True)):
17
+ """Loads the base model and applies the LoRA adapter."""
18
+ global loaded_model, loaded_tokenizer # If not using gr.State
19
+ model = None
20
+ tokenizer = None
21
+ status = "Starting model loading..."
22
+ progress(0, desc=status)
23
+ print(status)
24
+
25
+ if not base_model_id or not lora_model_id:
26
+ return None, None, "Error: Base Model ID and LoRA Model ID cannot be empty."
27
+
28
+ try:
29
+ # --- Load Base Model Tokenizer (for LLMs) ---
30
+ status = f"Loading tokenizer for {base_model_id}..."
31
+ progress(0.1, desc=status)
32
+ print(status)
33
+ tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
34
+ if tokenizer.pad_token is None:
35
+ print("Setting pad_token to eos_token")
36
+ tokenizer.pad_token = tokenizer.eos_token
37
+
38
+ # --- Load Base Model ---
39
+ # Add quantization or other configs if needed
40
+ status = f"Loading base model: {base_model_id}..."
41
+ progress(0.3, desc=status)
42
+ print(status)
43
+ base_model = AutoModelForCausalLM.from_pretrained(
44
+ base_model_id,
45
+ torch_dtype=torch.bfloat16, # Or float16
46
+ device_map="auto",
47
+ trust_remote_code=True
48
+ )
49
+ progress(0.7, desc="Base model loaded.")
50
+ print("Base model loaded.")
51
+
52
+ # --- Load LoRA Adapter ---
53
+ status = f"Loading LoRA adapter: {lora_model_id}..."
54
+ progress(0.8, desc=status)
55
+ print(status)
56
+ model = PeftModel.from_pretrained(
57
+ base_model,
58
+ lora_model_id,
59
+ )
60
+ progress(0.95, desc="LoRA adapter applied.")
61
+ print("PEFT LoRA model loaded.")
62
+
63
+ model.eval() # Set model to evaluation mode
64
+ status = "Models loaded successfully!"
65
+ progress(1.0, desc=status)
66
+ print(status)
67
+ # Return the loaded model and tokenizer to be stored in gr.State
68
+ return model, tokenizer, status
69
+
70
+ except Exception as e:
71
+ error_msg = f"Error loading models: {str(e)}"
72
+ print(error_msg)
73
+ # Ensure we return None for model/tokenizer on error
74
+ return None, None, error_msg
75
+
76
+ # --- Inference Function ---
77
+ def generate_text(
78
+ state_model, state_tokenizer, # Receive model/tokenizer from gr.State
79
+ prompt, max_new_tokens, temperature,
80
+ progress=gr.Progress(track_tqdm=True)
81
  ):
82
+ """Generates text using the loaded model."""
83
+ if state_model is None or state_tokenizer is None:
84
+ return "Error: Models not loaded. Please load models first."
85
+
86
+ status = "Tokenizing prompt..."
87
+ progress(0.1, desc=status)
88
+ print(status)
89
+ try:
90
+ inputs = state_tokenizer(prompt, return_tensors="pt").to(state_model.device)
91
+
92
+ status = "Generating text..."
93
+ progress(0.3, desc=status)
94
+ print(status)
95
+ with torch.no_grad():
96
+ outputs = state_model.generate(
97
+ **inputs,
98
+ max_new_tokens=int(max_new_tokens), # Ensure it's int
99
+ temperature=float(temperature), # Ensure it's float
100
+ pad_token_id=state_tokenizer.pad_token_id
101
+ # Add other parameters like top_k, top_p if desired
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  )
103
 
104
+ status = "Decoding output..."
105
+ progress(0.9, desc=status)
106
+ print(status)
107
+ result = state_tokenizer.decode(outputs[0], skip_special_tokens=True)
108
+ progress(1.0, desc="Generation complete.")
109
+ print("Generation complete.")
110
+ return result
111
+
112
+ except Exception as e:
113
+ error_msg = f"Error during generation: {str(e)}"
114
+ print(error_msg)
115
+ return error_msg
116
+
117
+
118
+ # --- Gradio Interface Definition ---
119
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
120
+ # Using gr.State to hold the loaded model and tokenizer objects
121
+ # This state persists within the user's session
122
+ model_state = gr.State(None)
123
+ tokenizer_state = gr.State(None)
124
+
125
+ gr.Markdown("# 🎛️ Dynamic LoRA Model Loader & Generator (Gradio)")
126
+ gr.Markdown(
127
+ "Enter the Hugging Face IDs for the base model and your LoRA adapter repository. "
128
+ "Then, load the models and generate text."
129
+ "\n**Note:** Ensure your LoRA file is named appropriately (e.g., `adapter_model.safetensors` or specify filename if loader supports it) and your Space has adequate hardware (GPU recommended)."
130
+ )
131
 
132
+ with gr.Row():
133
+ with gr.Column(scale=1):
134
+ gr.Markdown("## Configuration")
135
+ base_model_input = gr.Textbox(
136
+ label="Base Model ID (Hugging Face)",
137
+ placeholder="e.g., meta-llama/Meta-Llama-3-8B",
138
+ value="meta-llama/Meta-Llama-3-8B" # Example default
139
  )
140
+ lora_model_input = gr.Textbox(
141
+ label="LoRA Model ID (Hugging Face - where lora.safetensors is)",
142
+ placeholder="e.g., YourUsername/YourLoraRepo"
 
 
 
 
143
  )
144
+ load_button = gr.Button("Load Models", variant="primary")
145
+ status_output = gr.Textbox(label="Loading Status", interactive=False)
146
 
147
+ with gr.Column(scale=2):
148
+ gr.Markdown("## Inference")
149
+ prompt_input = gr.Textbox(label="Enter Prompt:", lines=5, placeholder="Once upon a time...")
150
  with gr.Row():
151
+ max_tokens_slider = gr.Slider(label="Max New Tokens", minimum=10, maximum=1024, value=200, step=10)
152
+ temp_slider = gr.Slider(label="Temperature", minimum=0.1, maximum=1.5, value=0.7, step=0.05)
153
+ generate_button = gr.Button("Generate Text", variant="primary")
154
+ generated_output = gr.Textbox(label="Generated Output", lines=10, interactive=False)
155
+
156
+ # --- Connect Actions ---
157
+ load_button.click(
158
+ fn=load_models,
159
+ inputs=[base_model_input, lora_model_input],
160
+ # Outputs: model state, tokenizer state, status message textbox
161
+ outputs=[model_state, tokenizer_state, status_output],
162
+ show_progress="full" # Show progress bar
163
+ )
 
 
164
 
165
+ generate_button.click(
166
+ fn=generate_text,
167
+ # Inputs: model state, tokenizer state, prompt, sliders
168
+ inputs=[model_state, tokenizer_state, prompt_input, max_tokens_slider, temp_slider],
169
+ outputs=[generated_output], # Output: generated text textbox
170
+ show_progress="full" # Show progress bar
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  )
172
 
173
+ # --- Launch the Gradio App ---
174
+ # HF Spaces automatically runs this when deploying app.py
175
  if __name__ == "__main__":
176
+ demo.launch() # Use share=True for a public link if running locally