Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,154 +1,65 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
-
import torch
|
8 |
-
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
-
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch_dtype = torch.float16
|
14 |
-
else:
|
15 |
-
torch_dtype = torch.float32
|
16 |
-
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
-
|
20 |
-
MAX_SEED = np.iinfo(np.int32).max
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
-
def infer(
|
26 |
-
prompt,
|
27 |
-
negative_prompt,
|
28 |
-
seed,
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
-
):
|
36 |
-
if randomize_seed:
|
37 |
-
seed = random.randint(0, MAX_SEED)
|
38 |
-
|
39 |
-
generator = torch.Generator().manual_seed(seed)
|
40 |
-
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
return image, seed
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
"
|
56 |
-
"
|
57 |
-
"
|
58 |
]
|
59 |
|
60 |
-
|
61 |
-
#
|
62 |
-
|
63 |
-
max-width: 640px;
|
64 |
-
}
|
65 |
-
"""
|
66 |
-
|
67 |
-
with gr.Blocks(css=css) as demo:
|
68 |
-
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
-
|
71 |
-
with gr.Row():
|
72 |
-
prompt = gr.Text(
|
73 |
-
label="Prompt",
|
74 |
-
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
-
|
80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
81 |
-
|
82 |
-
result = gr.Image(label="Result", show_label=False)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
visible=False,
|
90 |
-
)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
value=0,
|
98 |
-
)
|
99 |
|
100 |
-
|
|
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
label="Width",
|
105 |
-
minimum=256,
|
106 |
-
maximum=MAX_IMAGE_SIZE,
|
107 |
-
step=32,
|
108 |
-
value=1024, # Replace with defaults that work for your model
|
109 |
-
)
|
110 |
-
|
111 |
-
height = gr.Slider(
|
112 |
-
label="Height",
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024, # Replace with defaults that work for your model
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
guidance_scale = gr.Slider(
|
121 |
-
label="Guidance scale",
|
122 |
-
minimum=0.0,
|
123 |
-
maximum=10.0,
|
124 |
-
step=0.1,
|
125 |
-
value=0.0, # Replace with defaults that work for your model
|
126 |
-
)
|
127 |
-
|
128 |
-
num_inference_steps = gr.Slider(
|
129 |
-
label="Number of inference steps",
|
130 |
-
minimum=1,
|
131 |
-
maximum=50,
|
132 |
-
step=1,
|
133 |
-
value=2, # Replace with defaults that work for your model
|
134 |
-
)
|
135 |
-
|
136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
137 |
-
gr.on(
|
138 |
-
triggers=[run_button.click, prompt.submit],
|
139 |
-
fn=infer,
|
140 |
-
inputs=[
|
141 |
-
prompt,
|
142 |
-
negative_prompt,
|
143 |
-
seed,
|
144 |
-
randomize_seed,
|
145 |
-
width,
|
146 |
-
height,
|
147 |
-
guidance_scale,
|
148 |
-
num_inference_steps,
|
149 |
-
],
|
150 |
-
outputs=[result, seed],
|
151 |
-
)
|
152 |
|
153 |
-
|
154 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import subprocess
|
4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Use /tmp in Spaces, or ./data locally if you set LOCAL_TRAIN=1
|
7 |
+
LOCAL = os.environ.get("LOCAL_TRAIN", "").lower() in ("1","true")
|
8 |
+
DATA_DIR = os.path.join(os.getcwd(), "data") if LOCAL else "/tmp/data"
|
9 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
10 |
+
|
11 |
+
def prepare_dataset(files):
|
12 |
+
# wipe and copy uploaded files
|
13 |
+
for f in os.listdir(DATA_DIR):
|
14 |
+
os.remove(os.path.join(DATA_DIR, f))
|
15 |
+
for file in files:
|
16 |
+
dst = os.path.join(DATA_DIR, os.path.basename(file.name))
|
17 |
+
shutil.copyfile(file.name, dst)
|
18 |
+
return f"✅ {len(files)} files uploaded to {DATA_DIR}"
|
19 |
+
|
20 |
+
def start_training(base_model, trigger_word, steps, r, alpha):
|
21 |
+
# pass args via environment to train.py
|
22 |
+
env = os.environ.copy()
|
23 |
+
env.update({
|
24 |
+
"BASE_MODEL": base_model,
|
25 |
+
"TRIGGER_WORD": trigger_word,
|
26 |
+
"NUM_STEPS": str(steps),
|
27 |
+
"LORA_R": str(r),
|
28 |
+
"LORA_ALPHA": str(alpha),
|
29 |
+
"LOCAL_TRAIN": os.environ.get("LOCAL_TRAIN","")
|
30 |
+
})
|
31 |
+
# run training and capture all output
|
32 |
+
proc = subprocess.run(
|
33 |
+
["python3","train.py"],
|
34 |
+
capture_output=True, text=True, env=env
|
35 |
+
)
|
36 |
+
return proc.stdout + ("\n" + proc.stderr if proc.stderr else "")
|
37 |
|
38 |
+
model_choices = [
|
39 |
+
"HiDream-ai/HiDream-I1-Dev",
|
40 |
+
"runwayml/stable-diffusion-v1-5",
|
41 |
+
"stabilityai/stable-diffusion-2-1"
|
42 |
]
|
43 |
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
gr.Markdown("# 🖌️ HiDream LoRA Trainer")
|
46 |
+
gr.Markdown(f"Running in **{'local' if LOCAL else 'Spaces'}** mode; data dir: `{DATA_DIR}`")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
with gr.Row():
|
49 |
+
uploader = gr.File(file_types=["image",".txt"], file_count="multiple", label="Upload images + texts")
|
50 |
+
up_btn = gr.Button("📂 Upload")
|
51 |
+
up_status = gr.Textbox(label="Upload status")
|
|
|
|
|
|
|
52 |
|
53 |
+
mdl = gr.Dropdown(model_choices, value=model_choices[0], label="Base model")
|
54 |
+
tw = gr.Textbox(label="Trigger word", placeholder="e.g. rami-style")
|
55 |
+
st = gr.Slider(10,500,value=100,step=10,label="Training steps")
|
56 |
+
r_v = gr.Slider(4,128,value=16,step=4,label="LoRA rank (r)")
|
57 |
+
a_v = gr.Slider(4,128,value=16,step=4,label="LoRA alpha")
|
|
|
|
|
58 |
|
59 |
+
tr_btn = gr.Button("🚀 Train")
|
60 |
+
log_tb = gr.Textbox(label="Training log", lines=20)
|
61 |
|
62 |
+
up_btn.click(prepare_dataset, inputs=uploader, outputs=up_status)
|
63 |
+
tr_btn.click(start_training, inputs=[mdl,tw,st,r_v,a_v], outputs=log_tb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|