ramimu commited on
Commit
d6dc6d5
·
verified ·
1 Parent(s): 469e767

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -144
app.py CHANGED
@@ -1,154 +1,65 @@
 
 
 
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
 
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
 
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
 
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
101
 
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ import os
2
+ import shutil
3
+ import subprocess
4
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ # Use /tmp in Spaces, or ./data locally if you set LOCAL_TRAIN=1
7
+ LOCAL = os.environ.get("LOCAL_TRAIN", "").lower() in ("1","true")
8
+ DATA_DIR = os.path.join(os.getcwd(), "data") if LOCAL else "/tmp/data"
9
+ os.makedirs(DATA_DIR, exist_ok=True)
10
+
11
+ def prepare_dataset(files):
12
+ # wipe and copy uploaded files
13
+ for f in os.listdir(DATA_DIR):
14
+ os.remove(os.path.join(DATA_DIR, f))
15
+ for file in files:
16
+ dst = os.path.join(DATA_DIR, os.path.basename(file.name))
17
+ shutil.copyfile(file.name, dst)
18
+ return f"✅ {len(files)} files uploaded to {DATA_DIR}"
19
+
20
+ def start_training(base_model, trigger_word, steps, r, alpha):
21
+ # pass args via environment to train.py
22
+ env = os.environ.copy()
23
+ env.update({
24
+ "BASE_MODEL": base_model,
25
+ "TRIGGER_WORD": trigger_word,
26
+ "NUM_STEPS": str(steps),
27
+ "LORA_R": str(r),
28
+ "LORA_ALPHA": str(alpha),
29
+ "LOCAL_TRAIN": os.environ.get("LOCAL_TRAIN","")
30
+ })
31
+ # run training and capture all output
32
+ proc = subprocess.run(
33
+ ["python3","train.py"],
34
+ capture_output=True, text=True, env=env
35
+ )
36
+ return proc.stdout + ("\n" + proc.stderr if proc.stderr else "")
37
 
38
+ model_choices = [
39
+ "HiDream-ai/HiDream-I1-Dev",
40
+ "runwayml/stable-diffusion-v1-5",
41
+ "stabilityai/stable-diffusion-2-1"
42
  ]
43
 
44
+ with gr.Blocks() as demo:
45
+ gr.Markdown("# 🖌️ HiDream LoRA Trainer")
46
+ gr.Markdown(f"Running in **{'local' if LOCAL else 'Spaces'}** mode; data dir: `{DATA_DIR}`")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ with gr.Row():
49
+ uploader = gr.File(file_types=["image",".txt"], file_count="multiple", label="Upload images + texts")
50
+ up_btn = gr.Button("📂 Upload")
51
+ up_status = gr.Textbox(label="Upload status")
 
 
 
52
 
53
+ mdl = gr.Dropdown(model_choices, value=model_choices[0], label="Base model")
54
+ tw = gr.Textbox(label="Trigger word", placeholder="e.g. rami-style")
55
+ st = gr.Slider(10,500,value=100,step=10,label="Training steps")
56
+ r_v = gr.Slider(4,128,value=16,step=4,label="LoRA rank (r)")
57
+ a_v = gr.Slider(4,128,value=16,step=4,label="LoRA alpha")
 
 
58
 
59
+ tr_btn = gr.Button("🚀 Train")
60
+ log_tb = gr.Textbox(label="Training log", lines=20)
61
 
62
+ up_btn.click(prepare_dataset, inputs=uploader, outputs=up_status)
63
+ tr_btn.click(start_training, inputs=[mdl,tw,st,r_v,a_v], outputs=log_tb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
+ demo.launch(server_name="0.0.0.0", server_port=7860)