import os import shutil import subprocess import gradio as gr # Use /tmp in Spaces, or ./data locally if you set LOCAL_TRAIN=1 LOCAL = os.environ.get("LOCAL_TRAIN", "").lower() in ("1","true") DATA_DIR = os.path.join(os.getcwd(), "data") if LOCAL else "/tmp/data" os.makedirs(DATA_DIR, exist_ok=True) def prepare_dataset(files): # wipe and copy uploaded files for f in os.listdir(DATA_DIR): os.remove(os.path.join(DATA_DIR, f)) for file in files: dst = os.path.join(DATA_DIR, os.path.basename(file.name)) shutil.copyfile(file.name, dst) return f"✅ {len(files)} files uploaded to {DATA_DIR}" def start_training(base_model, trigger_word, steps, r, alpha): # pass args via environment to train.py env = os.environ.copy() env.update({ "BASE_MODEL": base_model, "TRIGGER_WORD": trigger_word, "NUM_STEPS": str(steps), "LORA_R": str(r), "LORA_ALPHA": str(alpha), "LOCAL_TRAIN": os.environ.get("LOCAL_TRAIN","") }) # run training and capture all output proc = subprocess.run( ["python3","train.py"], capture_output=True, text=True, env=env ) return proc.stdout + ("\n" + proc.stderr if proc.stderr else "") model_choices = [ "HiDream-ai/HiDream-I1-Dev", "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2-1" ] with gr.Blocks() as demo: gr.Markdown("# 🖌️ HiDream LoRA Trainer") gr.Markdown(f"Running in **{'local' if LOCAL else 'Spaces'}** mode; data dir: `{DATA_DIR}`") with gr.Row(): uploader = gr.File(file_types=["image",".txt"], file_count="multiple", label="Upload images + texts") up_btn = gr.Button("📂 Upload") up_status = gr.Textbox(label="Upload status") mdl = gr.Dropdown(model_choices, value=model_choices[0], label="Base model") tw = gr.Textbox(label="Trigger word", placeholder="e.g. rami-style") st = gr.Slider(10,500,value=100,step=10,label="Training steps") r_v = gr.Slider(4,128,value=16,step=4,label="LoRA rank (r)") a_v = gr.Slider(4,128,value=16,step=4,label="LoRA alpha") tr_btn = gr.Button("🚀 Train") log_tb = gr.Textbox(label="Training log", lines=20) up_btn.click(prepare_dataset, inputs=uploader, outputs=up_status) tr_btn.click(start_training, inputs=[mdl,tw,st,r_v,a_v], outputs=log_tb) demo.launch(server_name="0.0.0.0", server_port=7860)