Spaces:
Running
Running
File size: 17,098 Bytes
240a407 5cbfdab deb04b6 240a407 189eecb 240a407 deb04b6 b32e924 deb04b6 b32e924 deb04b6 b32e924 deb04b6 b32e924 deb04b6 240a407 deb04b6 240a407 deb04b6 240a407 deb04b6 240a407 d52290c 240a407 d52290c b32e924 240a407 b32e924 240a407 b32e924 d52290c deb04b6 b32e924 d52290c deb04b6 b32e924 deb04b6 d52290c b32e924 d52290c b32e924 d52290c b32e924 d52290c 240a407 d52290c deb04b6 b32e924 d52290c deb04b6 d52290c deb04b6 d52290c deb04b6 240a407 d52290c deb04b6 240a407 deb04b6 240a407 189eecb 240a407 01fd073 240a407 01fd073 240a407 deb04b6 240a407 deb04b6 240a407 deb04b6 240a407 01fd073 deb04b6 240a407 01fd073 deb04b6 240a407 01fd073 240a407 deb04b6 240a407 01fd073 240a407 01fd073 240a407 deb04b6 01fd073 240a407 01fd073 240a407 01fd073 240a407 01fd073 240a407 01fd073 deb04b6 01fd073 240a407 01fd073 deb04b6 01fd073 240a407 01fd073 240a407 01fd073 240a407 01fd073 240a407 01fd073 240a407 5cbfdab 01fd073 deb04b6 01fd073 deb04b6 240a407 deb04b6 01fd073 240a407 deb04b6 240a407 deb04b6 73ab9c0 240a407 deb04b6 01fd073 deb04b6 01fd073 240a407 5cbfdab 240a407 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import gradio as gr
import os
import traceback
import torch
from huggingface_hub import hf_hub_download
import shutil
import spaces
try:
from config import MODEL_REPO_ID, MODEL_FILES, LOCAL_MODEL_PATH
except ImportError:
MODEL_REPO_ID = "ramimu/chatterbox-voice-cloning-model"
LOCAL_MODEL_PATH = "./chatterbox_model_files"
MODEL_FILES = ["s3gen.pt", "t3_cfg.pt", "ve.pt", "tokenizer.json"]
try:
from chatterbox.tts import ChatterboxTTS
chatterbox_available = True
print("Chatterbox TTS imported successfully")
import inspect
print(f"ChatterboxTTS methods: {[method for method in dir(ChatterboxTTS) if not method.startswith('_')]}")
try:
sig = inspect.signature(ChatterboxTTS.__init__)
print(f"ChatterboxTTS.__init__ signature: {sig}")
except:
pass
if hasattr(ChatterboxTTS, 'from_local'):
try:
sig = inspect.signature(ChatterboxTTS.from_local)
print(f"ChatterboxTTS.from_local signature: {sig}")
except:
pass
if hasattr(ChatterboxTTS, 'from_pretrained'):
try:
sig = inspect.signature(ChatterboxTTS.from_pretrained)
print(f"ChatterboxTTS.from_pretrained signature: {sig}")
except:
pass
except ImportError as e:
print(f"Failed to import ChatterboxTTS: {e}")
print("Trying alternative import...")
try:
import chatterbox
from chatterbox import ChatterboxTTS
chatterbox_available = True
print("Chatterbox TTS imported with alternative method")
except ImportError as e2:
print(f"Alternative import also failed: {e2}")
chatterbox_available = False
model = None
def download_model_files():
print(f"Checking for model files in {LOCAL_MODEL_PATH}...")
os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
for filename in MODEL_FILES:
local_path = os.path.join(LOCAL_MODEL_PATH, filename)
if not os.path.exists(local_path):
print(f"Downloading {filename} from {MODEL_REPO_ID}...")
try:
downloaded_path = hf_hub_download(
repo_id=MODEL_REPO_ID,
filename=filename,
cache_dir="./cache",
force_download=False
)
shutil.copy2(downloaded_path, local_path)
print(f"β Downloaded and copied {filename}")
except Exception as e:
print(f"β Failed to download {filename}: {e}")
raise e
else:
print(f"β {filename} already exists locally")
print("All model files are ready!")
if chatterbox_available:
print("Downloading model files from Hugging Face Hub...")
try:
download_model_files()
except Exception as e:
print(f"ERROR: Failed to download model files: {e}")
print("Model loading will fail without these files.")
print(f"Attempting to load Chatterbox model from local directory: {LOCAL_MODEL_PATH}")
if not os.path.exists(LOCAL_MODEL_PATH):
print(f"ERROR: Local model directory not found at {LOCAL_MODEL_PATH}")
print("Please ensure the model files were downloaded successfully.")
else:
print(f"Contents of {LOCAL_MODEL_PATH}: {os.listdir(LOCAL_MODEL_PATH)}")
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
try:
model = ChatterboxTTS.from_local(LOCAL_MODEL_PATH, device)
print("Chatterbox model loaded successfully using from_local method.")
except Exception as e1:
print(f"from_local attempt failed: {e1}")
try:
model = ChatterboxTTS.from_pretrained(device)
print("Chatterbox model loaded successfully with from_pretrained.")
except Exception as e2:
print(f"from_pretrained failed: {e2}")
try:
import pathlib
import json
model_path = pathlib.Path(LOCAL_MODEL_PATH)
print(f"Manual loading with correct constructor signature...")
s3gen_path = model_path / "s3gen.pt"
ve_path = model_path / "ve.pt"
tokenizer_path = model_path / "tokenizer.json"
t3_cfg_path = model_path / "t3_cfg.pt"
print(f" Loading s3gen from: {s3gen_path}")
s3gen = torch.load(s3gen_path, map_location=torch.device('cpu'))
print(f" Loading ve from: {ve_path}")
ve = torch.load(ve_path, map_location=torch.device('cpu'))
print(f" Loading t3_cfg from: {t3_cfg_path}")
t3_cfg = torch.load(t3_cfg_path, map_location=torch.device('cpu'))
print(f" Loading tokenizer from: {tokenizer_path}")
with open(tokenizer_path, 'r') as f:
tokenizer_data = json.load(f)
try:
from chatterbox.models.tokenizers.tokenizer import EnTokenizer
tokenizer = EnTokenizer.from_dict(tokenizer_data)
print(" Created EnTokenizer from JSON data")
except Exception as tok_error:
print(f" Could not create EnTokenizer: {tok_error}")
tokenizer = tokenizer_data
print(" Creating ChatterboxTTS instance with correct signature...")
model = ChatterboxTTS(
t3=t3_cfg,
s3gen=s3gen,
ve=ve,
tokenizer=tokenizer,
device=device
)
print("Chatterbox model loaded successfully with manual constructor.")
except Exception as e3:
print(f"Manual loading failed: {e3}")
print(f"Detailed error: {str(e3)}")
try:
print("Trying alternative parameter order...")
model = ChatterboxTTS(
s3gen, ve, tokenizer, t3_cfg, device
)
print("Chatterbox model loaded with alternative parameter order.")
except Exception as e4:
print(f"Alternative parameter order failed: {e4}")
raise e3
except Exception as e:
print(f"ERROR: Failed to load Chatterbox model from local directory: {e}")
print("Detailed error trace:")
traceback.print_exc()
model = None
else:
print("ERROR: Chatterbox TTS library not available")
@spaces.GPU
def clone_voice(text_to_speak, reference_audio_path, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
if not chatterbox_available:
return None, "Error: Chatterbox TTS library not available. Please check installation."
if model is None:
return None, "Error: Model not loaded. Please check the logs for details."
if not text_to_speak or text_to_speak.strip() == "":
return None, "Error: Please enter some text to speak."
if reference_audio_path is None:
return None, "Error: Please upload a reference audio file (.wav or .mp3)."
try:
print(f"clone_voice function called:")
print(f" Text: '{text_to_speak}'")
print(f" Audio Path: '{reference_audio_path}'")
print(f" Exaggeration: {exaggeration}")
print(f" CFG/Pace: {cfg_pace}")
print(f" Random Seed: {random_seed}")
print(f" Temperature: {temperature}")
if random_seed > 0:
import torch
torch.manual_seed(random_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(random_seed)
output_wav_data = model.generate(
text=text_to_speak,
audio_prompt_path=reference_audio_path,
exaggeration=exaggeration,
cfg_weight=cfg_pace,
temperature=temperature
)
try:
sample_rate = model.sr
except:
sample_rate = 24000
print(f"Audio generated successfully by clone_voice. Output data type: {type(output_wav_data)}, Sample rate: {sample_rate}")
if isinstance(output_wav_data, str):
return output_wav_data, "Success: Audio generated successfully!"
else:
import numpy as np
if hasattr(output_wav_data, 'cpu'):
output_wav_data = output_wav_data.cpu().numpy()
if output_wav_data.ndim > 1:
output_wav_data = output_wav_data.squeeze()
return (sample_rate, output_wav_data), "Success: Audio generated successfully!"
except Exception as e:
print(f"ERROR: Failed during audio generation in clone_voice: {e}")
print("Detailed error trace for audio generation in clone_voice:")
traceback.print_exc()
return None, f"Error during audio generation: {str(e)}. Check logs for more details."
# Updated clone_voice_api function with detailed logging
def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
import requests
import tempfile
import os
import base64
temp_audio_path = None
try:
print(f"API call received by clone_voice_api:")
print(f" Text: {text_to_speak}")
print(f" Audio URL type: {type(reference_audio_url)}")
print(f" Audio URL preview: {str(reference_audio_url)[:100]}...")
print(f" Parameters: exag={exaggeration}, cfg={cfg_pace}, seed={random_seed}, temp={temperature}")
if isinstance(reference_audio_url, str) and reference_audio_url.startswith('data:audio'):
print("Processing base64 audio data...")
header, encoded = reference_audio_url.split(',', 1)
audio_data = base64.b64decode(encoded)
print(f"Decoded audio data size: {len(audio_data)} bytes")
if 'mp3' in header:
ext = '.mp3'
elif 'wav' in header:
ext = '.wav'
else:
ext = '.wav'
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
temp_file.write(audio_data)
temp_audio_path = temp_file.name
print(f"Created temporary audio file from base64: {temp_audio_path}")
elif isinstance(reference_audio_url, str) and reference_audio_url.startswith('http'):
print("Processing HTTP audio URL...")
response = requests.get(reference_audio_url)
response.raise_for_status()
if reference_audio_url.endswith('.mp3'):
ext = '.mp3'
elif reference_audio_url.endswith('.wav'):
ext = '.wav'
else:
ext = '.wav' # Default
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
temp_file.write(response.content)
temp_audio_path = temp_file.name
print(f"Created temporary audio file from URL: {temp_audio_path}")
elif isinstance(reference_audio_url, str) and os.path.exists(reference_audio_url):
print("Using direct file path provided as string...")
temp_audio_path = reference_audio_url
else:
# This case might occur if Gradio passes a TemporaryFileWrapper or similar
if hasattr(reference_audio_url, 'name'): # Check if it's a file-like object from Gradio
temp_audio_path = reference_audio_url.name
print(f"Using file path from Gradio object: {temp_audio_path}")
else:
print(f"Warning: Unrecognized audio input type or path: {reference_audio_url}. Assuming it's a direct path.")
temp_audio_path = str(reference_audio_url) # Fallback, attempt to use as path
if not temp_audio_path or not os.path.exists(temp_audio_path):
raise ValueError(f"Failed to obtain a valid audio file path from input: {reference_audio_url}")
print(f"Calling core clone_voice function with audio path: {temp_audio_path}")
audio_output, status = clone_voice(text_to_speak, temp_audio_path, exaggeration, cfg_pace, random_seed, temperature)
print(f"clone_voice returned: {type(audio_output)}, {status}")
# Clean up temporary file only if we created one from base64 or URL
if temp_audio_path and isinstance(reference_audio_url, str) and \
(reference_audio_url.startswith('data:audio') or reference_audio_url.startswith('http')):
try:
os.unlink(temp_audio_path)
print(f"Cleaned up temporary file: {temp_audio_path}")
except Exception as e:
print(f"Failed to clean up temp file {temp_audio_path}: {e}")
return audio_output, status
except Exception as e:
print(f"ERROR in clone_voice_api: {e}")
import traceback # Ensure traceback is imported here if not globally
traceback.print_exc()
# Attempt to clean up temporary file in case of error too
if temp_audio_path and isinstance(reference_audio_url, str) and \
(reference_audio_url.startswith('data:audio') or reference_audio_url.startswith('http')):
try:
if os.path.exists(temp_audio_path): # Check existence before unlinking
os.unlink(temp_audio_path)
print(f"Cleaned up temporary file after error: {temp_audio_path}")
except Exception as e_clean:
print(f"Failed to clean up temp file {temp_audio_path} after error: {e_clean}")
return None, f"API Error: {str(e)}"
def main():
print("Starting Advanced Gradio interface...")
iface = gr.Interface(
fn=clone_voice, # The UI and default Gradio API will use clone_voice directly
inputs=[
gr.Textbox(
label="Text to Speak",
placeholder="Enter the text you want the cloned voice to say...",
lines=3
),
gr.Audio(
type="filepath", # Gradio handles file upload/mic and provides a filepath
label="Reference Audio (Upload a short .wav or .mp3 clip)",
sources=["upload", "microphone"]
),
gr.Slider(
minimum=0.25,
maximum=1.0,
value=0.6,
step=0.05,
label="Exaggeration",
info="Controls voice characteristic emphasis (0.5 = neutral, higher = more exaggerated)"
),
gr.Slider(
minimum=0.2,
maximum=1.0,
value=0.3,
step=0.05,
label="CFG/Pace",
info="Classifier-free guidance weight (affects generation quality and pace)"
),
gr.Number(
value=0,
label="Random Seed",
info="Set to 0 for random results, or use a specific number for reproducible outputs",
precision=0
),
gr.Slider(
minimum=0.05,
maximum=2.0,
value=0.6,
step=0.05,
label="Temperature",
info="Controls randomness in generation (lower = more consistent, higher = more varied)"
)
],
outputs=[
gr.Audio(label="Generated Audio", type="numpy"),
gr.Textbox(label="Status", lines=2)
],
title="ποΈ Advanced Chatterbox Voice Cloning",
description="Clone any voice using advanced AI technology with fine-tuned controls.",
examples=[
["Hello, this is a test of the voice cloning system.", None, 0.5, 0.5, 0, 0.8],
["The quick brown fox jumps over the lazy dog.", None, 0.7, 0.3, 42, 0.6],
["Welcome to our AI voice cloning service. We hope you enjoy the experience!", None, 0.4, 0.7, 123, 1.0]
],
api_name="clone_voice" # Add this line!
)
iface.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
quiet=False,
favicon_path=None,
share=False, # Set to True if you want a public link from your local machine
auth=None
# app_kwargs for FastAPI specific settings are not directly used by gr.Interface.launch
# but if you were embedding in FastAPI, you'd pass them to FastAPI app.
)
if __name__ == "__main__":
main() |