File size: 17,098 Bytes
240a407
5cbfdab
deb04b6
240a407
 
 
189eecb
240a407
 
 
 
 
 
 
 
 
 
 
 
deb04b6
b32e924
 
deb04b6
b32e924
 
 
 
 
deb04b6
b32e924
 
 
 
 
 
deb04b6
b32e924
 
 
 
 
 
deb04b6
240a407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb04b6
240a407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb04b6
240a407
 
 
 
 
 
 
 
 
deb04b6
240a407
d52290c
240a407
 
 
 
d52290c
b32e924
240a407
b32e924
240a407
b32e924
d52290c
deb04b6
b32e924
d52290c
deb04b6
b32e924
 
 
 
deb04b6
d52290c
b32e924
d52290c
b32e924
d52290c
b32e924
d52290c
240a407
d52290c
deb04b6
b32e924
d52290c
 
 
 
 
deb04b6
 
d52290c
 
 
deb04b6
d52290c
 
 
 
 
deb04b6
240a407
 
d52290c
 
 
 
 
 
 
 
 
 
deb04b6
240a407
 
 
deb04b6
 
240a407
 
 
189eecb
240a407
 
 
 
 
 
 
 
 
 
 
01fd073
240a407
01fd073
240a407
 
 
 
 
 
 
 
 
 
 
 
 
 
deb04b6
 
 
240a407
 
 
deb04b6
240a407
deb04b6
240a407
01fd073
deb04b6
240a407
 
 
 
 
 
 
 
 
 
 
01fd073
 
deb04b6
240a407
 
01fd073
240a407
 
 
 
 
deb04b6
240a407
 
01fd073
 
 
 
 
 
 
 
240a407
 
01fd073
 
240a407
 
 
 
 
deb04b6
01fd073
240a407
 
 
01fd073
 
 
 
 
240a407
 
 
 
 
 
 
01fd073
240a407
 
 
01fd073
 
 
 
240a407
01fd073
 
 
 
 
 
 
 
 
 
deb04b6
01fd073
240a407
01fd073
deb04b6
01fd073
 
 
240a407
 
01fd073
 
 
 
240a407
01fd073
240a407
01fd073
 
 
 
 
 
 
240a407
01fd073
 
 
 
 
240a407
5cbfdab
01fd073
deb04b6
 
 
01fd073
deb04b6
 
240a407
 
 
deb04b6
 
01fd073
240a407
 
deb04b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240a407
deb04b6
 
 
 
 
 
 
 
 
 
 
73ab9c0
 
240a407
 
deb04b6
 
 
 
 
01fd073
deb04b6
01fd073
 
240a407
5cbfdab
 
240a407
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import gradio as gr
import os
import traceback
import torch
from huggingface_hub import hf_hub_download
import shutil
import spaces

try:
    from config import MODEL_REPO_ID, MODEL_FILES, LOCAL_MODEL_PATH
except ImportError:
    MODEL_REPO_ID = "ramimu/chatterbox-voice-cloning-model"
    LOCAL_MODEL_PATH = "./chatterbox_model_files"
    MODEL_FILES = ["s3gen.pt", "t3_cfg.pt", "ve.pt", "tokenizer.json"]

try:
    from chatterbox.tts import ChatterboxTTS
    chatterbox_available = True
    print("Chatterbox TTS imported successfully")

    import inspect
    print(f"ChatterboxTTS methods: {[method for method in dir(ChatterboxTTS) if not method.startswith('_')]}")

    try:
        sig = inspect.signature(ChatterboxTTS.__init__)
        print(f"ChatterboxTTS.__init__ signature: {sig}")
    except:
        pass

    if hasattr(ChatterboxTTS, 'from_local'):
        try:
            sig = inspect.signature(ChatterboxTTS.from_local)
            print(f"ChatterboxTTS.from_local signature: {sig}")
        except:
            pass

    if hasattr(ChatterboxTTS, 'from_pretrained'):
        try:
            sig = inspect.signature(ChatterboxTTS.from_pretrained)
            print(f"ChatterboxTTS.from_pretrained signature: {sig}")
        except:
            pass

except ImportError as e:
    print(f"Failed to import ChatterboxTTS: {e}")
    print("Trying alternative import...")
    try:
        import chatterbox
        from chatterbox import ChatterboxTTS
        chatterbox_available = True
        print("Chatterbox TTS imported with alternative method")
    except ImportError as e2:
        print(f"Alternative import also failed: {e2}")
        chatterbox_available = False

model = None

def download_model_files():
    print(f"Checking for model files in {LOCAL_MODEL_PATH}...")
    os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
    for filename in MODEL_FILES:
        local_path = os.path.join(LOCAL_MODEL_PATH, filename)
        if not os.path.exists(local_path):
            print(f"Downloading {filename} from {MODEL_REPO_ID}...")
            try:
                downloaded_path = hf_hub_download(
                    repo_id=MODEL_REPO_ID,
                    filename=filename,
                    cache_dir="./cache",
                    force_download=False
                )
                shutil.copy2(downloaded_path, local_path)
                print(f"βœ“ Downloaded and copied {filename}")
            except Exception as e:
                print(f"βœ— Failed to download {filename}: {e}")
                raise e
        else:
            print(f"βœ“ {filename} already exists locally")
    print("All model files are ready!")

if chatterbox_available:
    print("Downloading model files from Hugging Face Hub...")
    try:
        download_model_files()
    except Exception as e:
        print(f"ERROR: Failed to download model files: {e}")
        print("Model loading will fail without these files.")

    print(f"Attempting to load Chatterbox model from local directory: {LOCAL_MODEL_PATH}")
    if not os.path.exists(LOCAL_MODEL_PATH):
        print(f"ERROR: Local model directory not found at {LOCAL_MODEL_PATH}")
        print("Please ensure the model files were downloaded successfully.")
    else:
        print(f"Contents of {LOCAL_MODEL_PATH}: {os.listdir(LOCAL_MODEL_PATH)}")
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            print(f"Using device: {device}")

            try:
                model = ChatterboxTTS.from_local(LOCAL_MODEL_PATH, device)
                print("Chatterbox model loaded successfully using from_local method.")
            except Exception as e1:
                print(f"from_local attempt failed: {e1}")
                try:
                    model = ChatterboxTTS.from_pretrained(device)
                    print("Chatterbox model loaded successfully with from_pretrained.")
                except Exception as e2:
                    print(f"from_pretrained failed: {e2}")
                    try:
                        import pathlib
                        import json

                        model_path = pathlib.Path(LOCAL_MODEL_PATH)
                        print(f"Manual loading with correct constructor signature...")

                        s3gen_path = model_path / "s3gen.pt"
                        ve_path = model_path / "ve.pt"
                        tokenizer_path = model_path / "tokenizer.json"
                        t3_cfg_path = model_path / "t3_cfg.pt"

                        print(f"  Loading s3gen from: {s3gen_path}")
                        s3gen = torch.load(s3gen_path, map_location=torch.device('cpu'))
                        print(f"  Loading ve from: {ve_path}")
                        ve = torch.load(ve_path, map_location=torch.device('cpu'))
                        print(f"  Loading t3_cfg from: {t3_cfg_path}")
                        t3_cfg = torch.load(t3_cfg_path, map_location=torch.device('cpu'))
                        print(f"  Loading tokenizer from: {tokenizer_path}")
                        with open(tokenizer_path, 'r') as f:
                            tokenizer_data = json.load(f)

                        try:
                            from chatterbox.models.tokenizers.tokenizer import EnTokenizer
                            tokenizer = EnTokenizer.from_dict(tokenizer_data)
                            print("  Created EnTokenizer from JSON data")
                        except Exception as tok_error:
                            print(f"  Could not create EnTokenizer: {tok_error}")
                            tokenizer = tokenizer_data

                        print("  Creating ChatterboxTTS instance with correct signature...")
                        model = ChatterboxTTS(
                            t3=t3_cfg,
                            s3gen=s3gen,
                            ve=ve,
                            tokenizer=tokenizer,
                            device=device
                        )
                        print("Chatterbox model loaded successfully with manual constructor.")

                    except Exception as e3:
                        print(f"Manual loading failed: {e3}")
                        print(f"Detailed error: {str(e3)}")
                        try:
                            print("Trying alternative parameter order...")
                            model = ChatterboxTTS(
                                s3gen, ve, tokenizer, t3_cfg, device
                            )
                            print("Chatterbox model loaded with alternative parameter order.")
                        except Exception as e4:
                            print(f"Alternative parameter order failed: {e4}")
                            raise e3

        except Exception as e:
            print(f"ERROR: Failed to load Chatterbox model from local directory: {e}")
            print("Detailed error trace:")
            traceback.print_exc()
            model = None
else:
    print("ERROR: Chatterbox TTS library not available")

@spaces.GPU
def clone_voice(text_to_speak, reference_audio_path, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
    if not chatterbox_available:
        return None, "Error: Chatterbox TTS library not available. Please check installation."
    if model is None:
        return None, "Error: Model not loaded. Please check the logs for details."
    if not text_to_speak or text_to_speak.strip() == "":
        return None, "Error: Please enter some text to speak."
    if reference_audio_path is None:
        return None, "Error: Please upload a reference audio file (.wav or .mp3)."

    try:
        print(f"clone_voice function called:")
        print(f"  Text: '{text_to_speak}'")
        print(f"  Audio Path: '{reference_audio_path}'")
        print(f"  Exaggeration: {exaggeration}")
        print(f"  CFG/Pace: {cfg_pace}")
        print(f"  Random Seed: {random_seed}")
        print(f"  Temperature: {temperature}")

        if random_seed > 0:
            import torch
            torch.manual_seed(random_seed)
            if torch.cuda.is_available():
                torch.cuda.manual_seed(random_seed)

        output_wav_data = model.generate(
            text=text_to_speak,
            audio_prompt_path=reference_audio_path,
            exaggeration=exaggeration,
            cfg_weight=cfg_pace,
            temperature=temperature
        )

        try:
            sample_rate = model.sr
        except:
            sample_rate = 24000

        print(f"Audio generated successfully by clone_voice. Output data type: {type(output_wav_data)}, Sample rate: {sample_rate}")

        if isinstance(output_wav_data, str):
            return output_wav_data, "Success: Audio generated successfully!"
        else:
            import numpy as np
            if hasattr(output_wav_data, 'cpu'):
                output_wav_data = output_wav_data.cpu().numpy()
            if output_wav_data.ndim > 1:
                output_wav_data = output_wav_data.squeeze()
            return (sample_rate, output_wav_data), "Success: Audio generated successfully!"

    except Exception as e:
        print(f"ERROR: Failed during audio generation in clone_voice: {e}")
        print("Detailed error trace for audio generation in clone_voice:")
        traceback.print_exc()
        return None, f"Error during audio generation: {str(e)}. Check logs for more details."

# Updated clone_voice_api function with detailed logging
def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
    import requests
    import tempfile
    import os
    import base64

    temp_audio_path = None
    try:
        print(f"API call received by clone_voice_api:")
        print(f"  Text: {text_to_speak}")
        print(f"  Audio URL type: {type(reference_audio_url)}")
        print(f"  Audio URL preview: {str(reference_audio_url)[:100]}...")
        print(f"  Parameters: exag={exaggeration}, cfg={cfg_pace}, seed={random_seed}, temp={temperature}")

        if isinstance(reference_audio_url, str) and reference_audio_url.startswith('data:audio'):
            print("Processing base64 audio data...")
            header, encoded = reference_audio_url.split(',', 1)
            audio_data = base64.b64decode(encoded)
            print(f"Decoded audio data size: {len(audio_data)} bytes")

            if 'mp3' in header:
                ext = '.mp3'
            elif 'wav' in header:
                ext = '.wav'
            else:
                ext = '.wav'

            with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
                temp_file.write(audio_data)
                temp_audio_path = temp_file.name

            print(f"Created temporary audio file from base64: {temp_audio_path}")

        elif isinstance(reference_audio_url, str) and reference_audio_url.startswith('http'):
            print("Processing HTTP audio URL...")
            response = requests.get(reference_audio_url)
            response.raise_for_status()
            if reference_audio_url.endswith('.mp3'):
                ext = '.mp3'
            elif reference_audio_url.endswith('.wav'):
                ext = '.wav'
            else:
                ext = '.wav' # Default
            with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
                temp_file.write(response.content)
                temp_audio_path = temp_file.name
            print(f"Created temporary audio file from URL: {temp_audio_path}")
        elif isinstance(reference_audio_url, str) and os.path.exists(reference_audio_url):
             print("Using direct file path provided as string...")
             temp_audio_path = reference_audio_url
        else:
            # This case might occur if Gradio passes a TemporaryFileWrapper or similar
            if hasattr(reference_audio_url, 'name'): # Check if it's a file-like object from Gradio
                 temp_audio_path = reference_audio_url.name
                 print(f"Using file path from Gradio object: {temp_audio_path}")
            else:
                print(f"Warning: Unrecognized audio input type or path: {reference_audio_url}. Assuming it's a direct path.")
                temp_audio_path = str(reference_audio_url) # Fallback, attempt to use as path

        if not temp_audio_path or not os.path.exists(temp_audio_path):
            raise ValueError(f"Failed to obtain a valid audio file path from input: {reference_audio_url}")

        print(f"Calling core clone_voice function with audio path: {temp_audio_path}")
        audio_output, status = clone_voice(text_to_speak, temp_audio_path, exaggeration, cfg_pace, random_seed, temperature)
        print(f"clone_voice returned: {type(audio_output)}, {status}")

        # Clean up temporary file only if we created one from base64 or URL
        if temp_audio_path and isinstance(reference_audio_url, str) and \
           (reference_audio_url.startswith('data:audio') or reference_audio_url.startswith('http')):
            try:
                os.unlink(temp_audio_path)
                print(f"Cleaned up temporary file: {temp_audio_path}")
            except Exception as e:
                print(f"Failed to clean up temp file {temp_audio_path}: {e}")

        return audio_output, status

    except Exception as e:
        print(f"ERROR in clone_voice_api: {e}")
        import traceback # Ensure traceback is imported here if not globally
        traceback.print_exc()

        # Attempt to clean up temporary file in case of error too
        if temp_audio_path and isinstance(reference_audio_url, str) and \
           (reference_audio_url.startswith('data:audio') or reference_audio_url.startswith('http')):
            try:
                if os.path.exists(temp_audio_path): # Check existence before unlinking
                    os.unlink(temp_audio_path)
                    print(f"Cleaned up temporary file after error: {temp_audio_path}")
            except Exception as e_clean:
                 print(f"Failed to clean up temp file {temp_audio_path} after error: {e_clean}")
        return None, f"API Error: {str(e)}"


def main():
    print("Starting Advanced Gradio interface...")
    iface = gr.Interface(
        fn=clone_voice, # The UI and default Gradio API will use clone_voice directly
        inputs=[
            gr.Textbox(
                label="Text to Speak",
                placeholder="Enter the text you want the cloned voice to say...",
                lines=3
            ),
            gr.Audio(
                type="filepath", # Gradio handles file upload/mic and provides a filepath
                label="Reference Audio (Upload a short .wav or .mp3 clip)",
                sources=["upload", "microphone"]
            ),
            gr.Slider(
                minimum=0.25,
                maximum=1.0,
                value=0.6,
                step=0.05,
                label="Exaggeration",
                info="Controls voice characteristic emphasis (0.5 = neutral, higher = more exaggerated)"
            ),
            gr.Slider(
                minimum=0.2,
                maximum=1.0,
                value=0.3,
                step=0.05,
                label="CFG/Pace",
                info="Classifier-free guidance weight (affects generation quality and pace)"
            ),
            gr.Number(
                value=0,
                label="Random Seed",
                info="Set to 0 for random results, or use a specific number for reproducible outputs",
                precision=0
            ),
            gr.Slider(
                minimum=0.05,
                maximum=2.0,
                value=0.6,
                step=0.05,
                label="Temperature",
                info="Controls randomness in generation (lower = more consistent, higher = more varied)"
            )
        ],
        outputs=[
            gr.Audio(label="Generated Audio", type="numpy"),
            gr.Textbox(label="Status", lines=2)
        ],
        title="πŸŽ™οΈ Advanced Chatterbox Voice Cloning",
        description="Clone any voice using advanced AI technology with fine-tuned controls.",
        examples=[
            ["Hello, this is a test of the voice cloning system.", None, 0.5, 0.5, 0, 0.8],
            ["The quick brown fox jumps over the lazy dog.", None, 0.7, 0.3, 42, 0.6],
            ["Welcome to our AI voice cloning service. We hope you enjoy the experience!", None, 0.4, 0.7, 123, 1.0]
        ],
        api_name="clone_voice"  # Add this line!
    )
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        quiet=False,
        favicon_path=None,
        share=False, # Set to True if you want a public link from your local machine
        auth=None
        # app_kwargs for FastAPI specific settings are not directly used by gr.Interface.launch
        # but if you were embedding in FastAPI, you'd pass them to FastAPI app.
    )

if __name__ == "__main__":
    main()