Spaces:
Running
Running
File size: 11,321 Bytes
240a407 5cbfdab deb04b6 240a407 91d6893 240a407 189eecb 240a407 91d6893 deb04b6 91d6893 deb04b6 91d6893 b32e924 91d6893 b32e924 91d6893 240a407 91d6893 240a407 91d6893 240a407 91d6893 240a407 deb04b6 240a407 91d6893 240a407 91d6893 240a407 91d6893 240a407 189eecb 240a407 91d6893 240a407 91d6893 7be21d2 91d6893 240a407 91d6893 240a407 deb04b6 240a407 deb04b6 91d6893 240a407 91d6893 240a407 91d6893 240a407 91d6893 deb04b6 91d6893 240a407 91d6893 240a407 deb04b6 240a407 91d6893 5961c78 7be21d2 91d6893 7be21d2 5961c78 91d6893 7be21d2 91d6893 7be21d2 240a407 5961c78 91d6893 240a407 91d6893 240a407 91d6893 240a407 91d6893 5961c78 240a407 5961c78 5cbfdab 91d6893 deb04b6 91d6893 5cbfdab 91d6893 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import gradio as gr
import os
import traceback
import torch
import gc
from huggingface_hub import hf_hub_download
import shutil
import spaces
try:
from config import MODEL_REPO_ID, MODEL_FILES, LOCAL_MODEL_PATH
except ImportError:
MODEL_REPO_ID = "ramimu/chatterbox-voice-cloning-model"
LOCAL_MODEL_PATH = "./chatterbox_model_files"
MODEL_FILES = ["s3gen.pt", "t3_cfg.pt", "ve.pt", "tokenizer.json"]
try:
from chatterbox.tts import ChatterboxTTS
chatterbox_available = True
print("Chatterbox TTS imported successfully")
except ImportError as e:
print(f"Failed to import ChatterboxTTS: {e}")
chatterbox_available = False
model = None
def cleanup_gpu_memory():
"""Clean up GPU memory to prevent CUDA errors."""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
def safe_load_model():
"""Safely load the model with proper error handling."""
global model
if not chatterbox_available:
print("ERROR: Chatterbox TTS library not available")
return False
try:
# Clean up any existing GPU memory
cleanup_gpu_memory()
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Loading model on device: {device}")
# Try different loading methods
try:
model = ChatterboxTTS.from_local(LOCAL_MODEL_PATH, device)
print("β Model loaded successfully using from_local method.")
except Exception as e1:
print(f"from_local failed: {e1}")
try:
model = ChatterboxTTS.from_pretrained(device)
print("β Model loaded successfully with from_pretrained.")
except Exception as e2:
print(f"from_pretrained failed: {e2}")
# Manual loading as fallback
model = load_model_manually(device)
# Move model to device and set to eval mode
if model and hasattr(model, 'to'):
model = model.to(device)
if model and hasattr(model, 'eval'):
model.eval()
# Clean up after loading
cleanup_gpu_memory()
return True
except Exception as e:
print(f"ERROR: Failed to load model: {e}")
traceback.print_exc()
model = None
cleanup_gpu_memory()
return False
def load_model_manually(device):
"""Manual model loading with proper error handling."""
import pathlib
import json
model_path = pathlib.Path(LOCAL_MODEL_PATH)
print("Manual loading with correct constructor signature...")
# Load components to CPU first
s3gen_path = model_path / "s3gen.pt"
ve_path = model_path / "ve.pt"
tokenizer_path = model_path / "tokenizer.json"
t3_cfg_path = model_path / "t3_cfg.pt"
s3gen = torch.load(s3gen_path, map_location='cpu')
ve = torch.load(ve_path, map_location='cpu')
t3_cfg = torch.load(t3_cfg_path, map_location='cpu')
with open(tokenizer_path, 'r') as f:
tokenizer_data = json.load(f)
try:
from chatterbox.models.tokenizers.tokenizer import EnTokenizer
tokenizer = EnTokenizer.from_dict(tokenizer_data)
except Exception:
tokenizer = tokenizer_data
# Create model instance
model = ChatterboxTTS(
t3=t3_cfg,
s3gen=s3gen,
ve=ve,
tokenizer=tokenizer,
device=device
)
print("β Model loaded successfully with manual constructor.")
return model
def download_model_files():
"""Download model files with error handling."""
print(f"Checking for model files in {LOCAL_MODEL_PATH}...")
os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
for filename in MODEL_FILES:
local_path = os.path.join(LOCAL_MODEL_PATH, filename)
if not os.path.exists(local_path):
print(f"Downloading {filename} from {MODEL_REPO_ID}...")
try:
downloaded_path = hf_hub_download(
repo_id=MODEL_REPO_ID,
filename=filename,
cache_dir="./cache",
force_download=False
)
shutil.copy2(downloaded_path, local_path)
print(f"β Downloaded and copied {filename}")
except Exception as e:
print(f"β Failed to download {filename}: {e}")
raise e
else:
print(f"β {filename} already exists locally")
print("All model files are ready!")
# Initialize model
if chatterbox_available:
try:
download_model_files()
safe_load_model()
except Exception as e:
print(f"ERROR during initialization: {e}")
@spaces.GPU
def clone_voice(text_to_speak, reference_audio_path, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
"""Main voice cloning function with improved error handling."""
# Input validation
if not chatterbox_available:
return None, "Error: Chatterbox TTS library not available. Please check installation."
if model is None:
return None, "Error: Model not loaded. Please check the logs for details."
if not text_to_speak or text_to_speak.strip() == "":
return None, "Error: Please enter some text to speak."
if reference_audio_path is None:
return None, "Error: Please upload a reference audio file (.wav or .mp3)."
try:
print(f"Processing request:")
print(f" Text length: {len(text_to_speak)} characters")
print(f" Audio: '{reference_audio_path}'")
print(f" Parameters: exag={exaggeration}, cfg={cfg_pace}, seed={random_seed}, temp={temperature}")
# Clean GPU memory before generation
cleanup_gpu_memory()
# Set random seed if specified
if random_seed > 0:
torch.manual_seed(random_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(random_seed)
# Check CUDA availability before generation
if torch.cuda.is_available():
print(f"CUDA memory before generation: {torch.cuda.memory_allocated() / 1024**2:.1f} MB")
# Generate audio with error handling
try:
with torch.no_grad(): # Disable gradient computation
output_wav_data = model.generate(
text=text_to_speak,
audio_prompt_path=reference_audio_path,
exaggeration=exaggeration,
cfg_weight=cfg_pace,
temperature=temperature
)
except RuntimeError as e:
if "CUDA" in str(e) or "out of memory" in str(e):
print(f"CUDA error during generation: {e}")
# Try to recover by cleaning memory and retrying
cleanup_gpu_memory()
try:
with torch.no_grad():
output_wav_data = model.generate(
text=text_to_speak,
audio_prompt_path=reference_audio_path,
exaggeration=exaggeration,
cfg_weight=cfg_pace,
temperature=temperature
)
print("β Recovery successful after memory cleanup")
except Exception as retry_error:
print(f"β Recovery failed: {retry_error}")
return None, f"CUDA error: {str(e)}. GPU memory issue - please try again in a moment."
else:
raise e
# Get sample rate
try:
sample_rate = model.sr
except:
sample_rate = 24000
# Process output
if isinstance(output_wav_data, str):
result = output_wav_data
else:
import numpy as np
if hasattr(output_wav_data, 'cpu'):
output_wav_data = output_wav_data.cpu().numpy()
if output_wav_data.ndim > 1:
output_wav_data = output_wav_data.squeeze()
result = (sample_rate, output_wav_data)
# Clean up GPU memory after generation
cleanup_gpu_memory()
if torch.cuda.is_available():
print(f"CUDA memory after generation: {torch.cuda.memory_allocated() / 1024**2:.1f} MB")
print("β Audio generated successfully")
return result, "Success: Audio generated successfully!"
except Exception as e:
print(f"ERROR during audio generation: {e}")
traceback.print_exc()
# Clean up on error
cleanup_gpu_memory()
# Provide specific error messages
error_msg = str(e)
if "CUDA" in error_msg or "device-side assert" in error_msg:
return None, f"CUDA error: {error_msg}. This is usually a temporary GPU issue. Please try again in a moment."
elif "out of memory" in error_msg:
return None, f"GPU memory error: {error_msg}. Please try with shorter text or try again later."
else:
return None, f"Error during audio generation: {error_msg}. Check logs for more details."
def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
"""API wrapper with improved error handling."""
import requests
import tempfile
import os
import base64
temp_audio_path = None
try:
# Handle different audio input formats
if reference_audio_url.startswith('data:audio'):
header, encoded = reference_audio_url.split(',', 1)
audio_data = base64.b64decode(encoded)
ext = '.mp3' if 'mp3' in header else '.wav'
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
temp_file.write(audio_data)
temp_audio_path = temp_file.name
elif reference_audio_url.startswith('http'):
response = requests.get(reference_audio_url, timeout=30)
response.raise_for_status()
ext = '.mp3' if reference_audio_url.endswith('.mp3') else '.wav'
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
temp_file.write(response.content)
temp_audio_path = temp_file.name
else:
temp_audio_path = reference_audio_url
# Generate audio
audio_output, status = clone_voice(text_to_speak, temp_audio_path, exaggeration, cfg_pace, random_seed, temperature)
return audio_output, status
except Exception as e:
print(f"API Error: {e}")
return None, f"API Error: {str(e)}"
finally:
# Clean up temporary file
if temp_audio_path and temp_audio_path != reference_audio_url:
try:
os.unlink(temp_audio_path)
except:
pass
# Rest of your Gradio interface code remains the same...
def main():
print("Starting Advanced Gradio interface...")
# Your existing Gradio interface code here
pass
if __name__ == "__main__":
main()
|