File size: 13,808 Bytes
240a407
5cbfdab
deb04b6
240a407
 
 
189eecb
240a407
 
 
 
 
 
 
 
 
 
 
 
deb04b6
b32e924
 
deb04b6
b32e924
 
 
 
 
deb04b6
b32e924
 
 
 
 
 
deb04b6
b32e924
 
 
 
 
 
deb04b6
240a407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb04b6
240a407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb04b6
240a407
 
 
 
 
 
 
 
 
deb04b6
240a407
d52290c
240a407
 
 
 
d52290c
b32e924
240a407
b32e924
240a407
b32e924
d52290c
deb04b6
b32e924
d52290c
deb04b6
b32e924
 
 
 
deb04b6
d52290c
b32e924
d52290c
b32e924
d52290c
b32e924
d52290c
240a407
d52290c
deb04b6
b32e924
d52290c
 
 
 
 
deb04b6
 
d52290c
 
 
deb04b6
d52290c
 
 
 
 
deb04b6
240a407
 
d52290c
 
 
 
 
 
 
 
 
 
deb04b6
240a407
 
 
deb04b6
 
240a407
 
 
189eecb
240a407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deb04b6
 
 
240a407
 
 
deb04b6
240a407
deb04b6
240a407
 
deb04b6
240a407
 
 
 
 
 
 
 
 
 
 
 
 
deb04b6
240a407
 
 
 
 
 
 
deb04b6
240a407
 
 
 
 
 
 
 
 
 
deb04b6
240a407
 
 
 
 
 
 
 
 
 
 
deb04b6
240a407
 
 
 
 
deb04b6
240a407
deb04b6
240a407
 
 
 
 
 
 
 
 
 
 
 
 
5cbfdab
deb04b6
 
 
 
 
 
240a407
 
 
deb04b6
 
240a407
 
 
deb04b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240a407
deb04b6
 
 
 
 
 
 
 
 
 
 
 
240a407
 
deb04b6
 
 
 
 
 
 
240a407
5cbfdab
 
240a407
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import gradio as gr
import os
import traceback
import torch
from huggingface_hub import hf_hub_download
import shutil
import spaces

try:
    from config import MODEL_REPO_ID, MODEL_FILES, LOCAL_MODEL_PATH
except ImportError:
    MODEL_REPO_ID = "ramimu/chatterbox-voice-cloning-model"
    LOCAL_MODEL_PATH = "./chatterbox_model_files"
    MODEL_FILES = ["s3gen.pt", "t3_cfg.pt", "ve.pt", "tokenizer.json"]

try:
    from chatterbox.tts import ChatterboxTTS
    chatterbox_available = True
    print("Chatterbox TTS imported successfully")

    import inspect
    print(f"ChatterboxTTS methods: {[method for method in dir(ChatterboxTTS) if not method.startswith('_')]}")

    try:
        sig = inspect.signature(ChatterboxTTS.__init__)
        print(f"ChatterboxTTS.__init__ signature: {sig}")
    except:
        pass

    if hasattr(ChatterboxTTS, 'from_local'):
        try:
            sig = inspect.signature(ChatterboxTTS.from_local)
            print(f"ChatterboxTTS.from_local signature: {sig}")
        except:
            pass

    if hasattr(ChatterboxTTS, 'from_pretrained'):
        try:
            sig = inspect.signature(ChatterboxTTS.from_pretrained)
            print(f"ChatterboxTTS.from_pretrained signature: {sig}")
        except:
            pass

except ImportError as e:
    print(f"Failed to import ChatterboxTTS: {e}")
    print("Trying alternative import...")
    try:
        import chatterbox
        from chatterbox import ChatterboxTTS
        chatterbox_available = True
        print("Chatterbox TTS imported with alternative method")
    except ImportError as e2:
        print(f"Alternative import also failed: {e2}")
        chatterbox_available = False

model = None

def download_model_files():
    print(f"Checking for model files in {LOCAL_MODEL_PATH}...")
    os.makedirs(LOCAL_MODEL_PATH, exist_ok=True)
    for filename in MODEL_FILES:
        local_path = os.path.join(LOCAL_MODEL_PATH, filename)
        if not os.path.exists(local_path):
            print(f"Downloading {filename} from {MODEL_REPO_ID}...")
            try:
                downloaded_path = hf_hub_download(
                    repo_id=MODEL_REPO_ID,
                    filename=filename,
                    cache_dir="./cache",
                    force_download=False
                )
                shutil.copy2(downloaded_path, local_path)
                print(f"βœ“ Downloaded and copied {filename}")
            except Exception as e:
                print(f"βœ— Failed to download {filename}: {e}")
                raise e
        else:
            print(f"βœ“ {filename} already exists locally")
    print("All model files are ready!")

if chatterbox_available:
    print("Downloading model files from Hugging Face Hub...")
    try:
        download_model_files()
    except Exception as e:
        print(f"ERROR: Failed to download model files: {e}")
        print("Model loading will fail without these files.")

    print(f"Attempting to load Chatterbox model from local directory: {LOCAL_MODEL_PATH}")
    if not os.path.exists(LOCAL_MODEL_PATH):
        print(f"ERROR: Local model directory not found at {LOCAL_MODEL_PATH}")
        print("Please ensure the model files were downloaded successfully.")
    else:
        print(f"Contents of {LOCAL_MODEL_PATH}: {os.listdir(LOCAL_MODEL_PATH)}")
        try:
            device = "cuda" if torch.cuda.is_available() else "cpu"
            print(f"Using device: {device}")

            try:
                model = ChatterboxTTS.from_local(LOCAL_MODEL_PATH, device)
                print("Chatterbox model loaded successfully using from_local method.")
            except Exception as e1:
                print(f"from_local attempt failed: {e1}")
                try:
                    model = ChatterboxTTS.from_pretrained(device)
                    print("Chatterbox model loaded successfully with from_pretrained.")
                except Exception as e2:
                    print(f"from_pretrained failed: {e2}")
                    try:
                        import pathlib
                        import json

                        model_path = pathlib.Path(LOCAL_MODEL_PATH)
                        print(f"Manual loading with correct constructor signature...")

                        s3gen_path = model_path / "s3gen.pt"
                        ve_path = model_path / "ve.pt"
                        tokenizer_path = model_path / "tokenizer.json"
                        t3_cfg_path = model_path / "t3_cfg.pt"

                        print(f"  Loading s3gen from: {s3gen_path}")
                        s3gen = torch.load(s3gen_path, map_location=torch.device('cpu'))
                        print(f"  Loading ve from: {ve_path}")
                        ve = torch.load(ve_path, map_location=torch.device('cpu'))
                        print(f"  Loading t3_cfg from: {t3_cfg_path}")
                        t3_cfg = torch.load(t3_cfg_path, map_location=torch.device('cpu'))
                        print(f"  Loading tokenizer from: {tokenizer_path}")
                        with open(tokenizer_path, 'r') as f:
                            tokenizer_data = json.load(f)

                        try:
                            from chatterbox.models.tokenizers.tokenizer import EnTokenizer
                            tokenizer = EnTokenizer.from_dict(tokenizer_data)
                            print("  Created EnTokenizer from JSON data")
                        except Exception as tok_error:
                            print(f"  Could not create EnTokenizer: {tok_error}")
                            tokenizer = tokenizer_data

                        print("  Creating ChatterboxTTS instance with correct signature...")
                        model = ChatterboxTTS(
                            t3=t3_cfg,
                            s3gen=s3gen,
                            ve=ve,
                            tokenizer=tokenizer,
                            device=device
                        )
                        print("Chatterbox model loaded successfully with manual constructor.")

                    except Exception as e3:
                        print(f"Manual loading failed: {e3}")
                        print(f"Detailed error: {str(e3)}")
                        try:
                            print("Trying alternative parameter order...")
                            model = ChatterboxTTS(
                                s3gen, ve, tokenizer, t3_cfg, device
                            )
                            print("Chatterbox model loaded with alternative parameter order.")
                        except Exception as e4:
                            print(f"Alternative parameter order failed: {e4}")
                            raise e3

        except Exception as e:
            print(f"ERROR: Failed to load Chatterbox model from local directory: {e}")
            print("Detailed error trace:")
            traceback.print_exc()
            model = None
else:
    print("ERROR: Chatterbox TTS library not available")

@spaces.GPU
def clone_voice(text_to_speak, reference_audio_path, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
    if not chatterbox_available:
        return None, "Error: Chatterbox TTS library not available. Please check installation."
    if model is None:
        return None, "Error: Model not loaded. Please check the logs for details."
    if not text_to_speak or text_to_speak.strip() == "":
        return None, "Error: Please enter some text to speak."
    if reference_audio_path is None:
        return None, "Error: Please upload a reference audio file (.wav or .mp3)."

    try:
        print(f"Received request:")
        print(f"  Text: '{text_to_speak}'")
        print(f"  Audio: '{reference_audio_path}'")
        print(f"  Exaggeration: {exaggeration}")
        print(f"  CFG/Pace: {cfg_pace}")
        print(f"  Random Seed: {random_seed}")
        print(f"  Temperature: {temperature}")

        if random_seed > 0:
            import torch
            torch.manual_seed(random_seed)
            if torch.cuda.is_available():
                torch.cuda.manual_seed(random_seed)

        output_wav_data = model.generate(
            text=text_to_speak,
            audio_prompt_path=reference_audio_path,
            exaggeration=exaggeration,
            cfg_weight=cfg_pace,
            temperature=temperature
        )

        try:
            sample_rate = model.sr
        except:
            sample_rate = 24000

        print(f"Audio generated successfully. Output data type: {type(output_wav_data)}, Sample rate: {sample_rate}")

        if isinstance(output_wav_data, str):
            return output_wav_data, "Success: Audio generated successfully!"
        else:
            import numpy as np
            if hasattr(output_wav_data, 'cpu'):
                output_wav_data = output_wav_data.cpu().numpy()
            if output_wav_data.ndim > 1:
                output_wav_data = output_wav_data.squeeze()
            return (sample_rate, output_wav_data), "Success: Audio generated successfully!"

    except Exception as e:
        print(f"ERROR: Failed during audio generation: {e}")
        print("Detailed error trace for audio generation:")
        traceback.print_exc()
        return None, f"Error during audio generation: {str(e)}. Check logs for more details."

def clone_voice_api(text_to_speak, reference_audio_url, exaggeration=0.6, cfg_pace=0.3, random_seed=0, temperature=0.6):
    import requests
    import tempfile
    import os
    import base64

    temp_audio_path = None
    try:
        if reference_audio_url.startswith('data:audio'):
            header, encoded = reference_audio_url.split(',', 1)
            audio_data = base64.b64decode(encoded)
            if 'mp3' in header:
                ext = '.mp3'
            elif 'wav' in header:
                ext = '.wav'
            else:
                ext = '.wav'
            with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
                temp_file.write(audio_data)
                temp_audio_path = temp_file.name
        elif reference_audio_url.startswith('http'):
            response = requests.get(reference_audio_url)
            response.raise_for_status()
            if reference_audio_url.endswith('.mp3'):
                ext = '.mp3'
            elif reference_audio_url.endswith('.wav'):
                ext = '.wav'
            else:
                ext = '.wav'
            with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
                temp_file.write(response.content)
                temp_audio_path = temp_file.name
        else:
            temp_audio_path = reference_audio_url

        audio_output, status = clone_voice(text_to_speak, temp_audio_path, exaggeration, cfg_pace, random_seed, temperature)

        if temp_audio_path and temp_audio_path != reference_audio_url:
            try:
                os.unlink(temp_audio_path)
            except:
                pass
        return audio_output, status
    except Exception as e:
        if temp_audio_path and temp_audio_path != reference_audio_url:
            try:
                os.unlink(temp_audio_path)
            except:
                pass
        return None, f"API Error: {str(e)}"

def main():
    print("Starting Advanced Gradio interface...")
    iface = gr.Interface(
        fn=clone_voice_api,
        inputs=[
            gr.Textbox(
                label="Text to Speak",
                placeholder="Enter the text you want the cloned voice to say...",
                lines=3
            ),
            gr.Audio(
                type="filepath",
                label="Reference Audio (Upload a short .wav or .mp3 clip)",
                sources=["upload", "microphone"]
            ),
            gr.Slider(
                minimum=0.25,
                maximum=1.0,
                value=0.6,
                step=0.05,
                label="Exaggeration",
                info="Controls voice characteristic emphasis (0.5 = neutral, higher = more exaggerated)"
            ),
            gr.Slider(
                minimum=0.2,
                maximum=1.0,
                value=0.3,
                step=0.05,
                label="CFG/Pace",
                info="Classifier-free guidance weight (affects generation quality and pace)"
            ),
            gr.Number(
                value=0,
                label="Random Seed",
                info="Set to 0 for random results, or use a specific number for reproducible outputs",
                precision=0
            ),
            gr.Slider(
                minimum=0.05,
                maximum=2.0,
                value=0.6,
                step=0.05,
                label="Temperature",
                info="Controls randomness in generation (lower = more consistent, higher = more varied)"
            )
        ],
        outputs=[
            gr.Audio(label="Generated Audio", type="numpy"),
            gr.Textbox(label="Status", lines=2)
        ],
        title="πŸŽ™οΈ Advanced Chatterbox Voice Cloning",
        description="Clone any voice using advanced AI technology with fine-tuned controls.",
        examples=[
            ["Hello, this is a test of the voice cloning system.", None, 0.5, 0.5, 0, 0.8],
            ["The quick brown fox jumps over the lazy dog.", None, 0.7, 0.3, 42, 0.6],
            ["Welcome to our AI voice cloning service. We hope you enjoy the experience!", None, 0.4, 0.7, 123, 1.0]
        ]
    )
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True,
        quiet=False,
        favicon_path=None,
        share=False,
        auth=None
    )

if __name__ == "__main__":
    main()