Spaces:
Runtime error
Runtime error
| # !git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS | |
| import os | |
| import shutil | |
| import gradio as gr | |
| import sys | |
| import string | |
| import time | |
| import argparse | |
| import json | |
| import numpy as np | |
| # import IPython | |
| # from IPython.display import Audio | |
| import torch | |
| from TTS.tts.utils.synthesis import synthesis | |
| from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols | |
| try: | |
| from TTS.utils.audio import AudioProcessor | |
| except: | |
| from TTS.utils.audio import AudioProcessor | |
| from TTS.tts.models import setup_model | |
| from TTS.config import load_config | |
| from TTS.tts.models.vits import * | |
| from TTS.tts.utils.speakers import SpeakerManager | |
| from pydub import AudioSegment | |
| # from google.colab import files | |
| import librosa | |
| from scipy.io.wavfile import write, read | |
| import subprocess | |
| ''' | |
| from google.colab import drive | |
| drive.mount('/content/drive') | |
| src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar') | |
| dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar') | |
| shutil.copy(src_path, dst_path) | |
| ''' | |
| TTS_PATH = "TTS/" | |
| # add libraries into environment | |
| sys.path.append(TTS_PATH) # set this if TTS is not installed globally | |
| # Paths definition | |
| OUT_PATH = 'out/' | |
| # create output path | |
| os.makedirs(OUT_PATH, exist_ok=True) | |
| # model vars | |
| MODEL_PATH = 'best_model.pth.tar' | |
| CONFIG_PATH = 'config.json' | |
| TTS_LANGUAGES = "language_ids.json" | |
| TTS_SPEAKERS = "speakers.json" | |
| USE_CUDA = torch.cuda.is_available() | |
| # load the config | |
| C = load_config(CONFIG_PATH) | |
| # load the audio processor | |
| ap = AudioProcessor(**C.audio) | |
| speaker_embedding = None | |
| C.model_args['d_vector_file'] = TTS_SPEAKERS | |
| C.model_args['use_speaker_encoder_as_loss'] = False | |
| model = setup_model(C) | |
| model.language_manager.set_language_ids_from_file(TTS_LANGUAGES) | |
| # print(model.language_manager.num_languages, model.embedded_language_dim) | |
| # print(model.emb_l) | |
| cp = torch.load(MODEL_PATH, map_location=torch.device('cpu')) | |
| # remove speaker encoder | |
| model_weights = cp['model'].copy() | |
| for key in list(model_weights.keys()): | |
| if "speaker_encoder" in key: | |
| del model_weights[key] | |
| model.load_state_dict(model_weights) | |
| model.eval() | |
| if USE_CUDA: | |
| model = model.cuda() | |
| # synthesize voice | |
| use_griffin_lim = False | |
| # Paths definition | |
| CONFIG_SE_PATH = "config_se.json" | |
| CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar" | |
| # Load the Speaker encoder | |
| SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA) | |
| # Define helper function | |
| def compute_spec(ref_file): | |
| y, sr = librosa.load(ref_file, sr=ap.sample_rate) | |
| spec = ap.spectrogram(y) | |
| spec = torch.FloatTensor(spec).unsqueeze(0) | |
| return spec | |
| def voice_conversion(ta, ra, da): | |
| target_audio = 'target.wav' | |
| reference_audio = 'reference.wav' | |
| driving_audio = 'driving.wav' | |
| write(target_audio, ta[0], ta[1]) | |
| write(reference_audio, ra[0], ra[1]) | |
| write(driving_audio, da[0], da[1]) | |
| # !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f | |
| # !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f | |
| # !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f | |
| files = [target_audio, reference_audio, driving_audio] | |
| for file in files: | |
| subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"]) | |
| # ta_ = read(target_audio) | |
| target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio]) | |
| target_emb = torch.FloatTensor(target_emb).unsqueeze(0) | |
| driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio]) | |
| driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0) | |
| # Convert the voice | |
| driving_spec = compute_spec(driving_audio) | |
| y_lengths = torch.tensor([driving_spec.size(-1)]) | |
| if USE_CUDA: | |
| ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda()) | |
| ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy() | |
| else: | |
| ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb) | |
| ref_wav_voc = ref_wav_voc.squeeze().detach().numpy() | |
| # print("Reference Audio after decoder:") | |
| # IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate)) | |
| return (ap.sample_rate, ref_wav_voc) | |
| c3 = gr.Interface( | |
| fn=voice_conversion, | |
| inputs=[gr.Audio(label='Target Speaker - Reference Clip'), gr.Audio(label='Input Speaker - Reference Clip'), gr.Audio(label='Input Speaker - Clip To Convert')], | |
| outputs=gr.Audio(label='Target Speaker - Converted Clip'), | |
| examples=[['ntr.wav', 'timcast1.wav', 'timcast1.wav']], | |
| ) | |
| c1_m2 = gr.Interface( | |
| fn=voice_conversion, | |
| inputs=[gr.Audio(label='Target Speaker - Reference Clip'), gr.Audio(label='Input Speaker - Reference Clip', source='microphone'), gr.Audio(label='Input Speaker - Clip To Convert', source='microphone')], | |
| outputs=gr.Audio(label='Target Speaker - Converted Clip') | |
| ) | |
| demo = gr.TabbedInterface([c3, c1_m2], ["Pre-Recorded", "Microphone"], title="Voice Conversion using Your T T S") | |
| demo.launch(debug='True') |