Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,122 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
import tempfile
|
4 |
-
import faiss
|
5 |
-
import torch
|
6 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
-
from langchain.vectorstores import FAISS
|
8 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
-
from langchain.prompts import PromptTemplate
|
10 |
-
from langchain.chains import RetrievalQA
|
11 |
-
from langchain.llms import HuggingFacePipeline
|
12 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
13 |
-
from pdfminer.high_level import extract_text as extract_pdf_text
|
14 |
-
import docx
|
15 |
-
import nltk
|
16 |
-
|
17 |
-
nltk.download('punkt')
|
18 |
-
from nltk.tokenize import sent_tokenize
|
19 |
-
|
20 |
-
uploaded_texts = []
|
21 |
-
vector_store = None
|
22 |
-
qa_chain = None
|
23 |
-
|
24 |
-
embedding_model_name = "CAMeL-Lab/bert-base-arabic-camelbert-mix"
|
25 |
-
embeddings = HuggingFaceEmbeddings(model_name=embedding_model_name)
|
26 |
-
|
27 |
-
model_name = "csebuetnlp/mT5_small"
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
30 |
-
|
31 |
-
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512)
|
32 |
-
llm = HuggingFacePipeline(pipeline=pipe)
|
33 |
-
|
34 |
-
ARABIC_PROMPT_TEMPLATE = """
|
35 |
-
أنت نظام ذكي يجيب بناءً فقط على المعلومات المستخرجة من الكتب.
|
36 |
-
لا تستخدم أي معلومات خارجية.
|
37 |
-
السؤال: {question}
|
38 |
-
الإجابة:
|
39 |
-
"""
|
40 |
-
|
41 |
-
def format_arabic_prompt(question):
|
42 |
-
return ARABIC_PROMPT_TEMPLATE.format(question=question)
|
43 |
-
|
44 |
-
def extract_text_from_file(file_path):
|
45 |
-
if file_path.endswith(".pdf"):
|
46 |
-
return extract_pdf_text(file_path)
|
47 |
-
elif file_path.endswith(".docx") or file_path.endswith(".doc"):
|
48 |
-
doc = docx.Document(file_path)
|
49 |
-
return "\n".join([para.text for para in doc.paragraphs])
|
50 |
-
else:
|
51 |
-
raise ValueError("Unsupported file format")
|
52 |
-
|
53 |
-
def arabic_split_text(text):
|
54 |
-
sentences = sent_tokenize(text, language='arabic')
|
55 |
-
chunks = []
|
56 |
-
chunk = ""
|
57 |
-
for sentence in sentences:
|
58 |
-
if len(chunk) + len(sentence) <= 500:
|
59 |
-
chunk += " " + sentence
|
60 |
-
else:
|
61 |
-
chunks.append(chunk.strip())
|
62 |
-
chunk = sentence
|
63 |
-
if chunk:
|
64 |
-
chunks.append(chunk.strip())
|
65 |
-
return chunks
|
66 |
-
|
67 |
-
def train_from_texts(texts):
|
68 |
-
global vector_store, qa_chain
|
69 |
-
|
70 |
-
splitter = RecursiveCharacterTextSplitter(
|
71 |
-
chunk_size=500,
|
72 |
-
chunk_overlap=100,
|
73 |
-
length_function=len,
|
74 |
-
)
|
75 |
-
|
76 |
-
all_chunks = []
|
77 |
-
for text in texts:
|
78 |
-
chunks = arabic_split_text(text)
|
79 |
-
all_chunks.extend(chunks)
|
80 |
-
|
81 |
-
vectors = embeddings.embed_documents(all_chunks)
|
82 |
-
dimension = len(vectors[0])
|
83 |
-
index = faiss.IndexFlatL2(dimension)
|
84 |
-
vector_store = FAISS(embedding_function=embeddings, index=index, documents=all_chunks)
|
85 |
-
|
86 |
-
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 10})
|
87 |
-
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
|
88 |
-
|
89 |
-
def upload_book(file, progress=gr.Progress()):
|
90 |
-
with tempfile.NamedTemporaryFile(delete=False) as tmp:
|
91 |
-
tmp.write(file.read())
|
92 |
-
tmp_path = tmp.name
|
93 |
-
|
94 |
-
progress(0.2, desc="تحميل الملف...")
|
95 |
-
extracted_text = extract_text_from_file(tmp_path)
|
96 |
-
uploaded_texts.append(extracted_text)
|
97 |
-
progress(0.5, desc="معالجة النص...")
|
98 |
-
|
99 |
-
train_from_texts(uploaded_texts)
|
100 |
-
progress(1.0, desc="اكتمل التدريب!")
|
101 |
-
return "النظام جاهز للإجابة على أسئلتك"
|
102 |
-
|
103 |
-
def answer_question(user_question):
|
104 |
-
if qa_chain is None:
|
105 |
-
return "الرجاء رفع كتاب أولاً."
|
106 |
-
prompt = format_arabic_prompt(user_question)
|
107 |
-
result = qa_chain.run(prompt)
|
108 |
-
return result
|
109 |
-
|
110 |
-
with gr.Blocks() as demo:
|
111 |
-
with gr.Tab("تحميل الكتب"):
|
112 |
-
upload_button = gr.File(label="ارفع كتابك (.pdf .docx .doc)", file_types=[".pdf", ".docx", ".doc"])
|
113 |
-
upload_output = gr.Textbox(label="حالة النظام")
|
114 |
-
upload_button.upload(upload_book, inputs=upload_button, outputs=upload_output)
|
115 |
-
|
116 |
-
with gr.Tab("اسأل الكتاب"):
|
117 |
-
question = gr.Textbox(label="اكتب سؤالك بالعربية")
|
118 |
-
answer = gr.Textbox(label="الإجابة")
|
119 |
-
ask_button = gr.Button("إرسال السؤال")
|
120 |
-
ask_button.click(answer_question, inputs=question, outputs=answer)
|
121 |
-
|
122 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|