File size: 1,446 Bytes
3dc1a7f
 
 
 
 
07f5718
3dc1a7f
07f5718
 
 
3dc1a7f
07f5718
 
3dc1a7f
 
07f5718
 
 
 
3dc1a7f
07f5718
3dc1a7f
07f5718
3dc1a7f
 
07f5718
 
3dc1a7f
 
 
07f5718
3dc1a7f
07f5718
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from pathlib import Path
from langchain_community.document_loaders import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
from transformers import pipeline

# Retriever for top-5 relevant document chunks
def init_retriever():
    Path("data").mkdir(exist_ok=True)
    docs = []
    for pdf in Path("data").glob("*.pdf"):
        loader = PyMuPDFLoader(str(pdf))
        docs.extend(loader.load())
    splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    chunks = splitter.split_documents(docs)
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/LaBSE", model_kwargs={"device": "cpu"})
    vectordb = Chroma.from_documents(chunks, embeddings, persist_directory="chroma_db")
    return vectordb.as_retriever(search_kwargs={"k": 5})

retriever = init_retriever()

# Arabic QA pipeline (extractive)
qa_pipeline = pipeline(
    "question-answering",
    model="ZeyadAhmed/AraElectra-Arabic-SQuADv2-QA",
    tokenizer="ZeyadAhmed/AraElectra-Arabic-SQuADv2-QA",
    device=-1
)

def answer(question: str) -> str:
    docs = retriever.get_relevant_documents(question)
    context = "\n\n".join(d.page_content for d in docs)
    out = qa_pipeline(question=question, context=context)
    return out.get("answer", "عفواً، لم أجد إجابة واضحة.")