Spaces:
Sleeping
Sleeping
from pathlib import Path | |
from langchain.chains import RetrievalQA | |
from transformers import pipeline, AutoTokenizer | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline | |
def load_documents(pdf_dir): | |
docs = [] | |
for pdf_file in Path(pdf_dir).glob("*.pdf"): | |
loader = PyMuPDFLoader(str(pdf_file)) | |
docs.extend(loader.load()) | |
return docs | |
def load_rag_chain(): | |
Path("data").mkdir(exist_ok=True) | |
raw_docs = load_documents("data") | |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
pages = splitter.split_documents(raw_docs) | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/LaBSE", | |
model_kwargs={"device": "cpu"}, | |
) | |
vectordb = Chroma.from_documents(pages, embeddings, persist_directory="chroma_db") | |
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5}) | |
hf_pipeline = pipeline( | |
"text2text-generation", | |
model="ArabicNLP/mT5-base_ar", | |
tokenizer=AutoTokenizer.from_pretrained("ArabicNLP/mT5-base_ar"), | |
max_new_tokens=512, | |
temperature=0.3, | |
device=-1, | |
) | |
llm = HuggingFacePipeline(pipeline=hf_pipeline) | |
return RetrievalQA.from_llm(llm=llm, retriever=retriever) | |