Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +19 -0
- rag_pipeline.py +44 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from rag_pipeline import load_rag_chain
|
3 |
+
|
4 |
+
rag_chain = load_rag_chain()
|
5 |
+
|
6 |
+
def ask_question(query):
|
7 |
+
result = rag_chain.invoke(query)
|
8 |
+
return result['result']
|
9 |
+
|
10 |
+
iface = gr.Interface(
|
11 |
+
fn=ask_question,
|
12 |
+
inputs=gr.Textbox(lines=3, placeholder="اكتب سؤالك هنا...", label="سؤالك", rtl=True),
|
13 |
+
outputs=gr.Textbox(label="الإجابة", rtl=True),
|
14 |
+
title="🧠 روبوت دردشة عربي باستخدام ملفات PDF",
|
15 |
+
description="اكتب سؤالك بالعربية (يدعم اللهجة المصرية)، وسنبحث عن الإجابة داخل الملفات التي قمت بتحميلها."
|
16 |
+
)
|
17 |
+
|
18 |
+
if __name__ == "__main__":
|
19 |
+
iface.launch()
|
rag_pipeline.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from langchain.chains import RetrievalQA
|
3 |
+
from transformers import pipeline, AutoTokenizer
|
4 |
+
from langchain_community.vectorstores import Chroma
|
5 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
|
8 |
+
|
9 |
+
def load_documents(pdf_dir):
|
10 |
+
docs = []
|
11 |
+
for pdf_file in Path(pdf_dir).glob("*.pdf"):
|
12 |
+
loader = PyMuPDFLoader(str(pdf_file))
|
13 |
+
docs.extend(loader.load())
|
14 |
+
return docs
|
15 |
+
|
16 |
+
def load_rag_chain():
|
17 |
+
pdf_dir = Path("data")
|
18 |
+
pdf_dir.mkdir(parents=True, exist_ok=True)
|
19 |
+
|
20 |
+
raw_docs = load_documents(pdf_dir)
|
21 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
22 |
+
pages = splitter.split_documents(raw_docs)
|
23 |
+
|
24 |
+
embeddings = HuggingFaceEmbeddings(
|
25 |
+
model_name="sentence-transformers/LaBSE",
|
26 |
+
model_kwargs={"device": "cpu"},
|
27 |
+
)
|
28 |
+
|
29 |
+
vectordb_dir = "chroma_db"
|
30 |
+
vectordb = Chroma.from_documents(pages, embeddings, persist_directory=vectordb_dir)
|
31 |
+
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5})
|
32 |
+
|
33 |
+
hf_pipeline = pipeline(
|
34 |
+
"text2text-generation",
|
35 |
+
model="csebuetnlp/mT5_small_finetuned_squad",
|
36 |
+
tokenizer=AutoTokenizer.from_pretrained("csebuetnlp/mT5_small_finetuned_squad"),
|
37 |
+
max_new_tokens=512,
|
38 |
+
temperature=0.3,
|
39 |
+
device=-1
|
40 |
+
)
|
41 |
+
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
42 |
+
|
43 |
+
qa_chain = RetrievalQA.from_llm(llm=llm, retriever=retriever)
|
44 |
+
return qa_chain
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
sentence-transformers
|
4 |
+
langchain
|
5 |
+
langchain-community
|
6 |
+
langchain-huggingface
|
7 |
+
chromadb
|
8 |
+
pymupdf
|