Spaces:
Sleeping
Sleeping
Delete rag_pipeline.py
Browse files- rag_pipeline.py +0 -45
rag_pipeline.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
from langchain.chains import RetrievalQA
|
3 |
-
from transformers import pipeline, T5Tokenizer
|
4 |
-
from langchain_community.vectorstores import Chroma
|
5 |
-
from langchain_community.document_loaders import PyMuPDFLoader
|
6 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
|
8 |
-
|
9 |
-
def load_documents(pdf_dir):
|
10 |
-
docs = []
|
11 |
-
for pdf_file in Path(pdf_dir).glob("*.pdf"):
|
12 |
-
loader = PyMuPDFLoader(str(pdf_file))
|
13 |
-
docs.extend(loader.load())
|
14 |
-
return docs
|
15 |
-
|
16 |
-
def load_rag_chain():
|
17 |
-
pdf_dir = Path("data")
|
18 |
-
pdf_dir.mkdir(parents=True, exist_ok=True)
|
19 |
-
|
20 |
-
raw_docs = load_documents(pdf_dir)
|
21 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
22 |
-
pages = splitter.split_documents(raw_docs)
|
23 |
-
|
24 |
-
embeddings = HuggingFaceEmbeddings(
|
25 |
-
model_name="sentence-transformers/LaBSE",
|
26 |
-
model_kwargs={"device": "cpu"},
|
27 |
-
)
|
28 |
-
|
29 |
-
vectordb_dir = "chroma_db"
|
30 |
-
vectordb = Chroma.from_documents(pages, embeddings, persist_directory=vectordb_dir)
|
31 |
-
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5})
|
32 |
-
|
33 |
-
# ✅ Use slow tokenizer explicitly
|
34 |
-
tokenizer = T5Tokenizer.from_pretrained("ArabicNLP/mT5-base_ar", use_fast=False)
|
35 |
-
hf_pipeline = pipeline(
|
36 |
-
"text2text-generation",
|
37 |
-
model="ArabicNLP/mT5-base_ar",
|
38 |
-
tokenizer=tokenizer,
|
39 |
-
max_new_tokens=512,
|
40 |
-
temperature=0.3,
|
41 |
-
device=-1,
|
42 |
-
)
|
43 |
-
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
44 |
-
|
45 |
-
return RetrievalQA.from_llm(llm=llm, retriever=retriever)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|