from pathlib import Path from langchain.chains import RetrievalQA from transformers import pipeline, AutoTokenizer from langchain_community.vectorstores import Chroma from langchain_community.document_loaders import PyMuPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline def load_documents(pdf_dir): docs = [] for pdf_file in Path(pdf_dir).glob("*.pdf"): loader = PyMuPDFLoader(str(pdf_file)) docs.extend(loader.load()) return docs def load_rag_chain(): Path("data").mkdir(exist_ok=True) raw_docs = load_documents("data") splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) pages = splitter.split_documents(raw_docs) embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/LaBSE", model_kwargs={"device": "cpu"}, ) vectordb = Chroma.from_documents(pages, embeddings, persist_directory="chroma_db") retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5}) hf_pipeline = pipeline( "text2text-generation", model="ArabicNLP/mT5-base_ar", tokenizer=AutoTokenizer.from_pretrained("ArabicNLP/mT5-base_ar"), max_new_tokens=512, temperature=0.3, device=-1, ) llm = HuggingFacePipeline(pipeline=hf_pipeline) return RetrievalQA.from_llm(llm=llm, retriever=retriever)