RAG74 / rag_pipeline.py
ramysaidagieb's picture
Upload 3 files
77f3883 verified
raw
history blame
1.42 kB
from pathlib import Path
from langchain.chains import RetrievalQA
from transformers import pipeline, AutoTokenizer
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
def load_rag_chain():
pdf_dir = Path("data")
loader = DirectoryLoader(str(pdf_dir), glob="*.pdf")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
pages = loader.load_and_split(text_splitter=text_splitter)
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"},
)
vectordb_dir = "chroma_db"
vectordb = Chroma.from_documents(pages, embeddings, persist_directory=vectordb_dir)
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5})
hf_pipeline = pipeline(
"text-generation",
model="mistralai/Mistral-7B-Instruct-v0.2",
tokenizer=AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2"),
max_new_tokens=512,
temperature=0.3,
return_full_text=True,
device=-1,
)
llm = HuggingFacePipeline(pipeline=hf_pipeline)
qa_chain = RetrievalQA.from_llm(llm=llm, retriever=retriever)
return qa_chain