Spaces:
Sleeping
Sleeping
from pathlib import Path | |
from langchain.chains import RetrievalQA | |
from transformers import pipeline, AutoTokenizer | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.document_loaders import DirectoryLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline | |
def load_rag_chain(): | |
pdf_dir = Path("data") | |
loader = DirectoryLoader(str(pdf_dir), glob="*.pdf") | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
pages = loader.load_and_split(text_splitter=text_splitter) | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={"device": "cpu"}, | |
) | |
vectordb_dir = "chroma_db" | |
vectordb = Chroma.from_documents(pages, embeddings, persist_directory=vectordb_dir) | |
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5}) | |
hf_pipeline = pipeline( | |
"text-generation", | |
model="mistralai/Mistral-7B-Instruct-v0.2", | |
tokenizer=AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2"), | |
max_new_tokens=512, | |
temperature=0.3, | |
return_full_text=True, | |
device=-1, | |
) | |
llm = HuggingFacePipeline(pipeline=hf_pipeline) | |
qa_chain = RetrievalQA.from_llm(llm=llm, retriever=retriever) | |
return qa_chain |