Spaces:
Sleeping
Sleeping
Update rag_pipeline.py
Browse files- rag_pipeline.py +10 -10
rag_pipeline.py
CHANGED
@@ -6,6 +6,7 @@ from langchain_community.document_loaders import PyMuPDFLoader
|
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
|
8 |
|
|
|
9 |
def load_documents(pdf_dir):
|
10 |
docs = []
|
11 |
for pdf_file in Path(pdf_dir).glob("*.pdf"):
|
@@ -14,7 +15,7 @@ def load_documents(pdf_dir):
|
|
14 |
return docs
|
15 |
|
16 |
def load_rag_chain():
|
17 |
-
#
|
18 |
pdf_dir = Path("data")
|
19 |
pdf_dir.mkdir(parents=True, exist_ok=True)
|
20 |
|
@@ -23,29 +24,28 @@ def load_rag_chain():
|
|
23 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
24 |
pages = splitter.split_documents(raw_docs)
|
25 |
|
26 |
-
#
|
27 |
embeddings = HuggingFaceEmbeddings(
|
28 |
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
29 |
model_kwargs={"device": "cpu"},
|
30 |
)
|
31 |
|
32 |
-
# Vector
|
33 |
vectordb_dir = "chroma_db"
|
34 |
vectordb = Chroma.from_documents(pages, embeddings, persist_directory=vectordb_dir)
|
35 |
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5})
|
36 |
|
37 |
-
#
|
38 |
hf_pipeline = pipeline(
|
39 |
-
"
|
40 |
-
model="
|
41 |
-
tokenizer=AutoTokenizer.from_pretrained("
|
42 |
max_new_tokens=512,
|
43 |
temperature=0.3,
|
44 |
-
|
45 |
-
device=-1 # CPU
|
46 |
)
|
47 |
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
48 |
|
49 |
-
#
|
50 |
qa_chain = RetrievalQA.from_llm(llm=llm, retriever=retriever)
|
51 |
return qa_chain
|
|
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
|
8 |
|
9 |
+
# Load all PDFs from the data folder
|
10 |
def load_documents(pdf_dir):
|
11 |
docs = []
|
12 |
for pdf_file in Path(pdf_dir).glob("*.pdf"):
|
|
|
15 |
return docs
|
16 |
|
17 |
def load_rag_chain():
|
18 |
+
# Make sure the data directory exists
|
19 |
pdf_dir = Path("data")
|
20 |
pdf_dir.mkdir(parents=True, exist_ok=True)
|
21 |
|
|
|
24 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
25 |
pages = splitter.split_documents(raw_docs)
|
26 |
|
27 |
+
# Load sentence transformer for embeddings
|
28 |
embeddings = HuggingFaceEmbeddings(
|
29 |
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
30 |
model_kwargs={"device": "cpu"},
|
31 |
)
|
32 |
|
33 |
+
# Vector store
|
34 |
vectordb_dir = "chroma_db"
|
35 |
vectordb = Chroma.from_documents(pages, embeddings, persist_directory=vectordb_dir)
|
36 |
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5})
|
37 |
|
38 |
+
# Load a completely free and CPU-compatible model
|
39 |
hf_pipeline = pipeline(
|
40 |
+
"text2text-generation",
|
41 |
+
model="google/flan-t5-base",
|
42 |
+
tokenizer=AutoTokenizer.from_pretrained("google/flan-t5-base"),
|
43 |
max_new_tokens=512,
|
44 |
temperature=0.3,
|
45 |
+
device=-1 # -1 means CPU
|
|
|
46 |
)
|
47 |
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
48 |
|
49 |
+
# Build RetrievalQA chain
|
50 |
qa_chain = RetrievalQA.from_llm(llm=llm, retriever=retriever)
|
51 |
return qa_chain
|