Spaces:
Sleeping
Sleeping
Update rag_pipeline.py
Browse files- rag_pipeline.py +21 -6
rag_pipeline.py
CHANGED
@@ -2,25 +2,39 @@ from pathlib import Path
|
|
2 |
from langchain.chains import RetrievalQA
|
3 |
from transformers import pipeline, AutoTokenizer
|
4 |
from langchain_community.vectorstores import Chroma
|
5 |
-
from langchain_community.document_loaders import
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def load_rag_chain():
|
|
|
10 |
pdf_dir = Path("data")
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
14 |
|
|
|
15 |
embeddings = HuggingFaceEmbeddings(
|
16 |
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
17 |
model_kwargs={"device": "cpu"},
|
18 |
)
|
19 |
|
|
|
20 |
vectordb_dir = "chroma_db"
|
21 |
vectordb = Chroma.from_documents(pages, embeddings, persist_directory=vectordb_dir)
|
22 |
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5})
|
23 |
|
|
|
24 |
hf_pipeline = pipeline(
|
25 |
"text-generation",
|
26 |
model="mistralai/Mistral-7B-Instruct-v0.2",
|
@@ -28,9 +42,10 @@ def load_rag_chain():
|
|
28 |
max_new_tokens=512,
|
29 |
temperature=0.3,
|
30 |
return_full_text=True,
|
31 |
-
device=-1
|
32 |
)
|
33 |
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
34 |
|
|
|
35 |
qa_chain = RetrievalQA.from_llm(llm=llm, retriever=retriever)
|
36 |
-
return qa_chain
|
|
|
2 |
from langchain.chains import RetrievalQA
|
3 |
from transformers import pipeline, AutoTokenizer
|
4 |
from langchain_community.vectorstores import Chroma
|
5 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
|
8 |
|
9 |
+
def load_documents(pdf_dir):
|
10 |
+
docs = []
|
11 |
+
for pdf_file in Path(pdf_dir).glob("*.pdf"):
|
12 |
+
loader = PyMuPDFLoader(str(pdf_file))
|
13 |
+
docs.extend(loader.load())
|
14 |
+
return docs
|
15 |
+
|
16 |
def load_rag_chain():
|
17 |
+
# Ensure directory exists
|
18 |
pdf_dir = Path("data")
|
19 |
+
pdf_dir.mkdir(parents=True, exist_ok=True)
|
20 |
+
|
21 |
+
# Load and split PDFs
|
22 |
+
raw_docs = load_documents(pdf_dir)
|
23 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
24 |
+
pages = splitter.split_documents(raw_docs)
|
25 |
|
26 |
+
# Embedding model
|
27 |
embeddings = HuggingFaceEmbeddings(
|
28 |
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
29 |
model_kwargs={"device": "cpu"},
|
30 |
)
|
31 |
|
32 |
+
# Vector database
|
33 |
vectordb_dir = "chroma_db"
|
34 |
vectordb = Chroma.from_documents(pages, embeddings, persist_directory=vectordb_dir)
|
35 |
retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5})
|
36 |
|
37 |
+
# LLM pipeline using free model
|
38 |
hf_pipeline = pipeline(
|
39 |
"text-generation",
|
40 |
model="mistralai/Mistral-7B-Instruct-v0.2",
|
|
|
42 |
max_new_tokens=512,
|
43 |
temperature=0.3,
|
44 |
return_full_text=True,
|
45 |
+
device=-1 # CPU
|
46 |
)
|
47 |
llm = HuggingFacePipeline(pipeline=hf_pipeline)
|
48 |
|
49 |
+
# QA Chain
|
50 |
qa_chain = RetrievalQA.from_llm(llm=llm, retriever=retriever)
|
51 |
+
return qa_chain
|