from pathlib import Path from langchain.chains import RetrievalQA from transformers import pipeline, AutoTokenizer from langchain_community.vectorstores import Chroma from langchain_community.document_loaders import PyMuPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline # Load all PDFs from the data folder def load_documents(pdf_dir): docs = [] for pdf_file in Path(pdf_dir).glob("*.pdf"): loader = PyMuPDFLoader(str(pdf_file)) docs.extend(loader.load()) return docs def load_rag_chain(): # Make sure the data directory exists pdf_dir = Path("data") pdf_dir.mkdir(parents=True, exist_ok=True) # Load and split PDFs raw_docs = load_documents(pdf_dir) splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) pages = splitter.split_documents(raw_docs) # Load sentence transformer for embeddings embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"}, ) # Vector store vectordb_dir = "chroma_db" vectordb = Chroma.from_documents(pages, embeddings, persist_directory=vectordb_dir) retriever = vectordb.as_retriever(search_type="mmr", search_kwargs={"k": 5}) # Load a completely free and CPU-compatible model hf_pipeline = pipeline( "text2text-generation", model="google/flan-t5-base", tokenizer=AutoTokenizer.from_pretrained("google/flan-t5-base"), max_new_tokens=512, temperature=0.3, device=-1 # -1 means CPU ) llm = HuggingFacePipeline(pipeline=hf_pipeline) # Build RetrievalQA chain qa_chain = RetrievalQA.from_llm(llm=llm, retriever=retriever) return qa_chain