Spaces:
Sleeping
Sleeping
Update rag_pipeline.py
Browse files- rag_pipeline.py +27 -24
rag_pipeline.py
CHANGED
@@ -1,53 +1,56 @@
|
|
1 |
import time
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import numpy as np
|
|
|
4 |
|
5 |
class RAGPipeline:
|
6 |
-
def __init__(self):
|
7 |
-
|
|
|
8 |
self.tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
9 |
self.generator = AutoModelForCausalLM.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
10 |
self.chunk_embeddings = []
|
11 |
self.index = []
|
12 |
-
|
13 |
|
14 |
def build_index(self, chunks):
|
15 |
-
|
16 |
-
|
17 |
self.chunk_embeddings = []
|
18 |
self.index = []
|
19 |
|
20 |
for i, chunk in enumerate(chunks):
|
21 |
-
# هنا يمكن إضافة embedding حقيقي عبر نموذج أو طريقة أخرى
|
22 |
embedding = self._dummy_embedding(chunk)
|
23 |
self.chunk_embeddings.append(embedding)
|
24 |
self.index.append(chunk)
|
25 |
-
if i % 10 == 0:
|
26 |
-
|
27 |
|
28 |
self.chunk_embeddings = np.array(self.chunk_embeddings)
|
29 |
-
dim = self.chunk_embeddings.shape[1]
|
30 |
-
|
|
|
31 |
return "Index built successfully."
|
32 |
|
33 |
def _dummy_embedding(self, text):
|
34 |
-
# مؤقتاً فقط: تمثيل نصي عشوائي كـ embedding
|
35 |
return np.random.rand(768)
|
36 |
|
37 |
-
def generate_answer(self, question,
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
prompt = question + "\n\nمراجع:\n" + "\n".join(passages)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
max_new_tokens=150,
|
47 |
-
do_sample=True,
|
48 |
-
)
|
49 |
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
50 |
|
51 |
-
elapsed = time.time() -
|
52 |
-
|
53 |
return response, passages
|
|
|
1 |
import time
|
|
|
2 |
import numpy as np
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
class RAGPipeline:
|
6 |
+
def __init__(self, logger):
|
7 |
+
self.logger = logger
|
8 |
+
self.logger("[RAG] Initializing tokenizer and model...")
|
9 |
self.tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
10 |
self.generator = AutoModelForCausalLM.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
11 |
self.chunk_embeddings = []
|
12 |
self.index = []
|
13 |
+
self.logger("[RAG] Initialization done.")
|
14 |
|
15 |
def build_index(self, chunks):
|
16 |
+
start = time.time()
|
17 |
+
self.logger(f"[RAG] Building index for {len(chunks)} chunks...")
|
18 |
self.chunk_embeddings = []
|
19 |
self.index = []
|
20 |
|
21 |
for i, chunk in enumerate(chunks):
|
|
|
22 |
embedding = self._dummy_embedding(chunk)
|
23 |
self.chunk_embeddings.append(embedding)
|
24 |
self.index.append(chunk)
|
25 |
+
if (i+1) % 10 == 0 or (i+1) == len(chunks):
|
26 |
+
self.logger(f"[RAG] Processed {i+1}/{len(chunks)} chunks.")
|
27 |
|
28 |
self.chunk_embeddings = np.array(self.chunk_embeddings)
|
29 |
+
dim = self.chunk_embeddings.shape[1] if len(self.chunk_embeddings) > 0 else 0
|
30 |
+
elapsed = time.time() - start
|
31 |
+
self.logger(f"[RAG] Index built with dimension {dim} in {elapsed:.2f}s.")
|
32 |
return "Index built successfully."
|
33 |
|
34 |
def _dummy_embedding(self, text):
|
|
|
35 |
return np.random.rand(768)
|
36 |
|
37 |
+
def generate_answer(self, question, top_k=3):
|
38 |
+
start = time.time()
|
39 |
+
self.logger(f"[RAG] Generating answer for question:\n{question}")
|
40 |
+
|
41 |
+
if len(self.index) == 0:
|
42 |
+
self.logger("[RAG] Warning: index is empty, please build index first.")
|
43 |
+
return "لم يتم بناء الفهرس بعد.", []
|
44 |
+
|
45 |
+
# بحث مبسط لأقرب النصوص (dummy - عشوائي)
|
46 |
+
passages = self.index[:top_k]
|
47 |
|
48 |
+
prompt = question + "\n\nالمراجع:\n" + "\n".join(passages)
|
|
|
49 |
|
50 |
+
inputs = self.tokenizer(prompt, return_tensors="pt")
|
51 |
+
output = self.generator.generate(inputs.input_ids, max_new_tokens=150, do_sample=True)
|
|
|
|
|
|
|
52 |
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
53 |
|
54 |
+
elapsed = time.time() - start
|
55 |
+
self.logger(f"[RAG] Answer generated in {elapsed:.2f}s.")
|
56 |
return response, passages
|