Spaces:
Sleeping
Sleeping
Update rag_pipeline.py
Browse files- rag_pipeline.py +9 -11
rag_pipeline.py
CHANGED
@@ -5,16 +5,16 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
5 |
class RAGPipeline:
|
6 |
def __init__(self, logger):
|
7 |
self.logger = logger
|
8 |
-
self.logger("[RAG]
|
9 |
self.tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
10 |
self.generator = AutoModelForCausalLM.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
11 |
self.chunk_embeddings = []
|
12 |
self.index = []
|
13 |
-
self.logger("[RAG]
|
14 |
|
15 |
def build_index(self, chunks):
|
16 |
start = time.time()
|
17 |
-
self.logger(f"[RAG]
|
18 |
self.chunk_embeddings = []
|
19 |
self.index = []
|
20 |
|
@@ -23,28 +23,26 @@ class RAGPipeline:
|
|
23 |
self.chunk_embeddings.append(embedding)
|
24 |
self.index.append(chunk)
|
25 |
if (i+1) % 10 == 0 or (i+1) == len(chunks):
|
26 |
-
self.logger(f"[RAG]
|
27 |
|
28 |
self.chunk_embeddings = np.array(self.chunk_embeddings)
|
29 |
dim = self.chunk_embeddings.shape[1] if len(self.chunk_embeddings) > 0 else 0
|
30 |
elapsed = time.time() - start
|
31 |
-
self.logger(f"[RAG]
|
32 |
-
return "
|
33 |
|
34 |
def _dummy_embedding(self, text):
|
35 |
return np.random.rand(768)
|
36 |
|
37 |
def generate_answer(self, question, top_k=3):
|
38 |
start = time.time()
|
39 |
-
self.logger(f"[RAG]
|
40 |
|
41 |
if len(self.index) == 0:
|
42 |
-
self.logger("[RAG]
|
43 |
return "لم يتم بناء الفهرس بعد.", []
|
44 |
|
45 |
-
# بحث مبسط لأقرب النصوص (dummy - عشوائي)
|
46 |
passages = self.index[:top_k]
|
47 |
-
|
48 |
prompt = question + "\n\nالمراجع:\n" + "\n".join(passages)
|
49 |
|
50 |
inputs = self.tokenizer(prompt, return_tensors="pt")
|
@@ -52,5 +50,5 @@ class RAGPipeline:
|
|
52 |
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
53 |
|
54 |
elapsed = time.time() - start
|
55 |
-
self.logger(f"[RAG]
|
56 |
return response, passages
|
|
|
5 |
class RAGPipeline:
|
6 |
def __init__(self, logger):
|
7 |
self.logger = logger
|
8 |
+
self.logger("[RAG] جاري تحميل النموذج والمحول...")
|
9 |
self.tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
10 |
self.generator = AutoModelForCausalLM.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
11 |
self.chunk_embeddings = []
|
12 |
self.index = []
|
13 |
+
self.logger("[RAG] تم التحميل بنجاح.")
|
14 |
|
15 |
def build_index(self, chunks):
|
16 |
start = time.time()
|
17 |
+
self.logger(f"[RAG] بناء الفهرس لـ {len(chunks)} مقاطع...")
|
18 |
self.chunk_embeddings = []
|
19 |
self.index = []
|
20 |
|
|
|
23 |
self.chunk_embeddings.append(embedding)
|
24 |
self.index.append(chunk)
|
25 |
if (i+1) % 10 == 0 or (i+1) == len(chunks):
|
26 |
+
self.logger(f"[RAG] تم معالجة {i+1}/{len(chunks)} مقاطع.")
|
27 |
|
28 |
self.chunk_embeddings = np.array(self.chunk_embeddings)
|
29 |
dim = self.chunk_embeddings.shape[1] if len(self.chunk_embeddings) > 0 else 0
|
30 |
elapsed = time.time() - start
|
31 |
+
self.logger(f"[RAG] تم بناء الفهرس بأبعاد {dim} في {elapsed:.2f} ثانية.")
|
32 |
+
return "تم بناء الفهرس بنجاح."
|
33 |
|
34 |
def _dummy_embedding(self, text):
|
35 |
return np.random.rand(768)
|
36 |
|
37 |
def generate_answer(self, question, top_k=3):
|
38 |
start = time.time()
|
39 |
+
self.logger(f"[RAG] توليد إجابة للسؤال: {question}")
|
40 |
|
41 |
if len(self.index) == 0:
|
42 |
+
self.logger("[RAG] تحذير: الفهرس فارغ، الرجاء بناء الفهرس أولاً.")
|
43 |
return "لم يتم بناء الفهرس بعد.", []
|
44 |
|
|
|
45 |
passages = self.index[:top_k]
|
|
|
46 |
prompt = question + "\n\nالمراجع:\n" + "\n".join(passages)
|
47 |
|
48 |
inputs = self.tokenizer(prompt, return_tensors="pt")
|
|
|
50 |
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
51 |
|
52 |
elapsed = time.time() - start
|
53 |
+
self.logger(f"[RAG] تم توليد الإجابة في {elapsed:.2f} ثانية.")
|
54 |
return response, passages
|