Spaces:
Sleeping
Sleeping
Update rag_pipeline.py
Browse files- rag_pipeline.py +9 -11
rag_pipeline.py
CHANGED
|
@@ -5,16 +5,16 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 5 |
class RAGPipeline:
|
| 6 |
def __init__(self, logger):
|
| 7 |
self.logger = logger
|
| 8 |
-
self.logger("[RAG]
|
| 9 |
self.tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
| 10 |
self.generator = AutoModelForCausalLM.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
| 11 |
self.chunk_embeddings = []
|
| 12 |
self.index = []
|
| 13 |
-
self.logger("[RAG]
|
| 14 |
|
| 15 |
def build_index(self, chunks):
|
| 16 |
start = time.time()
|
| 17 |
-
self.logger(f"[RAG]
|
| 18 |
self.chunk_embeddings = []
|
| 19 |
self.index = []
|
| 20 |
|
|
@@ -23,28 +23,26 @@ class RAGPipeline:
|
|
| 23 |
self.chunk_embeddings.append(embedding)
|
| 24 |
self.index.append(chunk)
|
| 25 |
if (i+1) % 10 == 0 or (i+1) == len(chunks):
|
| 26 |
-
self.logger(f"[RAG]
|
| 27 |
|
| 28 |
self.chunk_embeddings = np.array(self.chunk_embeddings)
|
| 29 |
dim = self.chunk_embeddings.shape[1] if len(self.chunk_embeddings) > 0 else 0
|
| 30 |
elapsed = time.time() - start
|
| 31 |
-
self.logger(f"[RAG]
|
| 32 |
-
return "
|
| 33 |
|
| 34 |
def _dummy_embedding(self, text):
|
| 35 |
return np.random.rand(768)
|
| 36 |
|
| 37 |
def generate_answer(self, question, top_k=3):
|
| 38 |
start = time.time()
|
| 39 |
-
self.logger(f"[RAG]
|
| 40 |
|
| 41 |
if len(self.index) == 0:
|
| 42 |
-
self.logger("[RAG]
|
| 43 |
return "لم يتم بناء الفهرس بعد.", []
|
| 44 |
|
| 45 |
-
# بحث مبسط لأقرب النصوص (dummy - عشوائي)
|
| 46 |
passages = self.index[:top_k]
|
| 47 |
-
|
| 48 |
prompt = question + "\n\nالمراجع:\n" + "\n".join(passages)
|
| 49 |
|
| 50 |
inputs = self.tokenizer(prompt, return_tensors="pt")
|
|
@@ -52,5 +50,5 @@ class RAGPipeline:
|
|
| 52 |
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
| 53 |
|
| 54 |
elapsed = time.time() - start
|
| 55 |
-
self.logger(f"[RAG]
|
| 56 |
return response, passages
|
|
|
|
| 5 |
class RAGPipeline:
|
| 6 |
def __init__(self, logger):
|
| 7 |
self.logger = logger
|
| 8 |
+
self.logger("[RAG] جاري تحميل النموذج والمحول...")
|
| 9 |
self.tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
| 10 |
self.generator = AutoModelForCausalLM.from_pretrained("aubmindlab/aragpt2-mega", trust_remote_code=True)
|
| 11 |
self.chunk_embeddings = []
|
| 12 |
self.index = []
|
| 13 |
+
self.logger("[RAG] تم التحميل بنجاح.")
|
| 14 |
|
| 15 |
def build_index(self, chunks):
|
| 16 |
start = time.time()
|
| 17 |
+
self.logger(f"[RAG] بناء الفهرس لـ {len(chunks)} مقاطع...")
|
| 18 |
self.chunk_embeddings = []
|
| 19 |
self.index = []
|
| 20 |
|
|
|
|
| 23 |
self.chunk_embeddings.append(embedding)
|
| 24 |
self.index.append(chunk)
|
| 25 |
if (i+1) % 10 == 0 or (i+1) == len(chunks):
|
| 26 |
+
self.logger(f"[RAG] تم معالجة {i+1}/{len(chunks)} مقاطع.")
|
| 27 |
|
| 28 |
self.chunk_embeddings = np.array(self.chunk_embeddings)
|
| 29 |
dim = self.chunk_embeddings.shape[1] if len(self.chunk_embeddings) > 0 else 0
|
| 30 |
elapsed = time.time() - start
|
| 31 |
+
self.logger(f"[RAG] تم بناء الفهرس بأبعاد {dim} في {elapsed:.2f} ثانية.")
|
| 32 |
+
return "تم بناء الفهرس بنجاح."
|
| 33 |
|
| 34 |
def _dummy_embedding(self, text):
|
| 35 |
return np.random.rand(768)
|
| 36 |
|
| 37 |
def generate_answer(self, question, top_k=3):
|
| 38 |
start = time.time()
|
| 39 |
+
self.logger(f"[RAG] توليد إجابة للسؤال: {question}")
|
| 40 |
|
| 41 |
if len(self.index) == 0:
|
| 42 |
+
self.logger("[RAG] تحذير: الفهرس فارغ، الرجاء بناء الفهرس أولاً.")
|
| 43 |
return "لم يتم بناء الفهرس بعد.", []
|
| 44 |
|
|
|
|
| 45 |
passages = self.index[:top_k]
|
|
|
|
| 46 |
prompt = question + "\n\nالمراجع:\n" + "\n".join(passages)
|
| 47 |
|
| 48 |
inputs = self.tokenizer(prompt, return_tensors="pt")
|
|
|
|
| 50 |
response = self.tokenizer.decode(output[0], skip_special_tokens=True)
|
| 51 |
|
| 52 |
elapsed = time.time() - start
|
| 53 |
+
self.logger(f"[RAG] تم توليد الإجابة في {elapsed:.2f} ثانية.")
|
| 54 |
return response, passages
|