Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,6 @@ embedder = SentenceTransformer("sentence-transformers/LaBSE")
|
|
17 |
|
18 |
# تقطيع النصوص من PDF
|
19 |
def process_pdf(pdf_file):
|
20 |
-
# استخدام مسار الملف مباشرة
|
21 |
doc = fitz.open(pdf_file.name)
|
22 |
texts = []
|
23 |
for page in doc:
|
@@ -35,23 +34,22 @@ def ingest(pdf_file):
|
|
35 |
col.add(ids=[f"chunk_{i}"], embeddings=[emb.tolist()], metadatas=[{"text": chunk}])
|
36 |
return f"✅ تمت إضافة {len(texts)} مقطعاً."
|
37 |
|
38 |
-
# استرجاع السياق من Chroma
|
39 |
-
retriever = dspy.Retrieve(lambda q: [m["text"] for m in col.query(q, n_results=1)["metadatas"]])
|
40 |
-
|
41 |
# تعريف التوقيع باستخدام InputField و OutputField
|
42 |
class RagSig(dspy.Signature):
|
43 |
question: str = dspy.InputField()
|
44 |
context: str = dspy.InputField()
|
45 |
answer: str = dspy.OutputField()
|
46 |
|
47 |
-
# وحدة DSPy
|
48 |
class RagMod(dspy.Module):
|
49 |
def __init__(self):
|
50 |
super().__init__()
|
51 |
self.predictor = dspy.Predict(RagSig)
|
52 |
|
53 |
def forward(self, question):
|
54 |
-
|
|
|
|
|
55 |
return self.predictor(question=question, context=context)
|
56 |
|
57 |
model = RagMod()
|
|
|
17 |
|
18 |
# تقطيع النصوص من PDF
|
19 |
def process_pdf(pdf_file):
|
|
|
20 |
doc = fitz.open(pdf_file.name)
|
21 |
texts = []
|
22 |
for page in doc:
|
|
|
34 |
col.add(ids=[f"chunk_{i}"], embeddings=[emb.tolist()], metadatas=[{"text": chunk}])
|
35 |
return f"✅ تمت إضافة {len(texts)} مقطعاً."
|
36 |
|
|
|
|
|
|
|
37 |
# تعريف التوقيع باستخدام InputField و OutputField
|
38 |
class RagSig(dspy.Signature):
|
39 |
question: str = dspy.InputField()
|
40 |
context: str = dspy.InputField()
|
41 |
answer: str = dspy.OutputField()
|
42 |
|
43 |
+
# وحدة DSPy مع استرجاع السياق من Chroma داخل forward
|
44 |
class RagMod(dspy.Module):
|
45 |
def __init__(self):
|
46 |
super().__init__()
|
47 |
self.predictor = dspy.Predict(RagSig)
|
48 |
|
49 |
def forward(self, question):
|
50 |
+
results = col.query(question, n_results=1)
|
51 |
+
context_list = [m["text"] for m in results["metadatas"]]
|
52 |
+
context = context_list[0] if context_list else ""
|
53 |
return self.predictor(question=question, context=context)
|
54 |
|
55 |
model = RagMod()
|