Spaces:
Build error
Build error
Upload 5 files
Browse files- README.md +19 -14
- app.py +88 -0
- requirements.txt +6 -0
- trainset.jsonl +2 -0
- valset.jsonl +2 -0
README.md
CHANGED
@@ -1,14 +1,19 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🧠 Arabic RAG System with DSPy + Gradio
|
2 |
+
|
3 |
+
This is a full Hugging Face Space project that allows:
|
4 |
+
- Uploading Arabic PDF documents.
|
5 |
+
- Storing and indexing chunks using ChromaDB.
|
6 |
+
- Asking questions and generating answers using DSPy with context retrieval.
|
7 |
+
- Improving answer accuracy using MIPROv2 optimization based on train/val sets.
|
8 |
+
|
9 |
+
## 🚀 Usage
|
10 |
+
|
11 |
+
1. Upload one or more Arabic PDFs.
|
12 |
+
2. Ask a question in Arabic.
|
13 |
+
3. Optionally upload `trainset.jsonl` and `valset.jsonl` to fine-tune the DSPy RAG module.
|
14 |
+
|
15 |
+
## 📁 Files
|
16 |
+
|
17 |
+
- `app.py` — Main code
|
18 |
+
- `requirements.txt` — Dependencies
|
19 |
+
- `trainset.jsonl` / `valset.jsonl` — Example training and validation sets
|
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dspy, gradio as gr
|
2 |
+
import chromadb
|
3 |
+
from chromadb.config import Settings
|
4 |
+
import fitz # PyMuPDF
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
import json
|
7 |
+
from dspy import Example, MIPROv2, Evaluate, evaluate
|
8 |
+
|
9 |
+
# إعداد LLM
|
10 |
+
dspy.settings.configure(lm=dspy.OpenAI(model="gpt-4"))
|
11 |
+
|
12 |
+
# إعداد قاعدة البيانات
|
13 |
+
client = chromadb.Client(Settings(chroma_db_impl="duckdb+parquet", persist_directory="./chroma_db"))
|
14 |
+
col = client.get_or_create_collection(name="arabic_docs", metadata={"hnsw:space": "cosine"})
|
15 |
+
|
16 |
+
embedder = SentenceTransformer("sentence-transformers/LaBSE")
|
17 |
+
|
18 |
+
# استيراد وتقطيع PDF
|
19 |
+
def process_pdf(pdf_bytes):
|
20 |
+
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
|
21 |
+
texts = []
|
22 |
+
for p in doc:
|
23 |
+
text = p.get_text()
|
24 |
+
for chunk in text.split("\n\n"):
|
25 |
+
if len(chunk) > 50:
|
26 |
+
texts.append(chunk.strip())
|
27 |
+
return texts
|
28 |
+
|
29 |
+
def ingest(pdf_bytes):
|
30 |
+
texts = process_pdf(pdf_bytes)
|
31 |
+
embeddings = embedder.encode(texts, show_progress_bar=True)
|
32 |
+
for i, (chunk, emb) in enumerate(zip(texts, embeddings)):
|
33 |
+
col.add(ids=[f"chunk_{i}"], embeddings=[emb.tolist()], metadatas=[{"text": chunk}])
|
34 |
+
return f"تمت إضافة {len(texts)} مقطعاً"
|
35 |
+
|
36 |
+
retriever = dspy.Retrieve(lambda q: [m["text"] for m in col.query(q, n_results=3)["metadatas"]], k=1)
|
37 |
+
|
38 |
+
class RagSig(dspy.Signature):
|
39 |
+
question: str
|
40 |
+
context: str
|
41 |
+
answer: str
|
42 |
+
|
43 |
+
class RagMod(dspy.Module):
|
44 |
+
def __init__(self):
|
45 |
+
super().__init__()
|
46 |
+
self.predictor = dspy.Predict(RagSig)
|
47 |
+
|
48 |
+
def forward(self, question):
|
49 |
+
context = retriever(question)[0]
|
50 |
+
return self.predictor(question=question, context=context)
|
51 |
+
|
52 |
+
model = RagMod()
|
53 |
+
|
54 |
+
def answer(question):
|
55 |
+
out = model(question)
|
56 |
+
return out.answer
|
57 |
+
|
58 |
+
def load_dataset(path):
|
59 |
+
with open(path, "r", encoding="utf-8") as f:
|
60 |
+
return [Example(**json.loads(l)).with_inputs("question") for l in f]
|
61 |
+
|
62 |
+
def optimize(train_file, val_file):
|
63 |
+
trainset = load_dataset(train_file.name)
|
64 |
+
valset = load_dataset(val_file.name)
|
65 |
+
tp = MIPROv2(metric=evaluate.answer_exact_match, auto="light", num_threads=4)
|
66 |
+
optimized = tp.compile(model, trainset=trainset, valset=valset)
|
67 |
+
global model
|
68 |
+
model = optimized
|
69 |
+
return "✅ تم تحسين النموذج!"
|
70 |
+
|
71 |
+
with gr.Blocks() as demo:
|
72 |
+
gr.Markdown("## 🧠 نظام RAG عربي باستخدام DSPy")
|
73 |
+
with gr.Tab("📥 تحميل وتخزين"):
|
74 |
+
pdf_input = gr.File(label="ارفع ملف PDF")
|
75 |
+
ingest_btn = gr.Button("إضافة إلى قاعدة البيانات")
|
76 |
+
ingest_btn.click(ingest, inputs=pdf_input, outputs=gr.Textbox())
|
77 |
+
with gr.Tab("❓ سؤال"):
|
78 |
+
q = gr.Textbox(label="اكتب سؤالك")
|
79 |
+
answer_btn = gr.Button("احصل على الإجابة")
|
80 |
+
out = gr.Textbox(label="الإجابة")
|
81 |
+
answer_btn.click(answer, inputs=q, outputs=out)
|
82 |
+
with gr.Tab("⚙️ تحسين النموذج"):
|
83 |
+
train_file = gr.File(label="trainset.jsonl")
|
84 |
+
val_file = gr.File(label="valset.jsonl")
|
85 |
+
opt_btn = gr.Button("ابدأ التحسين")
|
86 |
+
result = gr.Textbox(label="نتيجة التحسين")
|
87 |
+
opt_btn.click(optimize, inputs=[train_file, val_file], outputs=result)
|
88 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dspy-ai
|
2 |
+
chromadb
|
3 |
+
sentence-transformers
|
4 |
+
PyMuPDF
|
5 |
+
gradio
|
6 |
+
transformers
|
trainset.jsonl
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
{"question": "ما هو DSPy؟", "answer": "DSPy هو إطار مفتوح المصدر من جامعة ستانفورد لتصميم برامج LLMs."}
|
2 |
+
{"question": "كيف يعمل نظام RAG؟", "answer": "نظام RAG يعمل من خلال استرجاع المعلومات من قاعدة معرفة ثم توليد إجابة باستخدام نموذج لغة كبير."}
|
valset.jsonl
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
{"question": "ما فائدة Chroma في RAG؟", "answer": "Chroma تُستخدم لتخزين واسترجاع المقاطع النصية ذات الصلة بالسؤال."}
|
2 |
+
{"question": "ما هي وظيفة MIPROv2؟", "answer": "MIPROv2 هو محسن يُستخدم لتحسين دقة نموذج DSPy باستخدام بيانات تدريبية."}
|