import os import gradio as gr import chromadb import fitz # PyMuPDF import json import dspy from sentence_transformers import SentenceTransformer from dspy import Example, MIPROv2, Evaluate, evaluate from dspy import LiteLLM # تحميل التوكن من Secrets HF_TOKEN = os.environ["HF_TOKEN"] # تهيئة النموذج عبر LiteLLM من Hugging Face API dspy.settings.configure( lm=LiteLLM( model="HuggingFaceH4/zephyr-7b-beta", # اختر نموذج Instruct مدعوم api_base="https://api-inference.huggingface.co/v1", api_key=HF_TOKEN ) ) # إعداد قاعدة بيانات Chroma client = chromadb.PersistentClient(path="./chroma_db") col = client.get_or_create_collection(name="arabic_docs") # إعداد نموذج LaBSE للتضمين العربي embedder = SentenceTransformer("sentence-transformers/LaBSE") def process_pdf(pdf_bytes): doc = fitz.open(stream=pdf_bytes, filetype="pdf") texts = [] for page in doc: text = page.get_text() for chunk in text.split("\n\n"): if len(chunk.strip()) > 50: texts.append(chunk.strip()) return texts def ingest(pdf_file): pdf_bytes = pdf_file texts = process_pdf(pdf_bytes) embeddings = embedder.encode(texts, show_progress_bar=True) for i, (chunk, emb) in enumerate(zip(texts, embeddings)): col.add(ids=[f"chunk_{i}"], embeddings=[emb.tolist()], metadatas=[{"text": chunk}]) return f"✅ تمت إضافة {len(texts)} مقطعاً." def retrieve_context(question): embedding = embedder.encode([question])[0] results = col.query(query_embeddings=[embedding.tolist()], n_results=3) context_list = [m["text"] for m in results["metadatas"][0]] return "\n\n".join(context_list) class RagSig(dspy.Signature): question: str = dspy.InputField() context: str = dspy.InputField() answer: str = dspy.OutputField() class RagMod(dspy.Module): def __init__(self): super().__init__() self.predictor = dspy.Predict(RagSig) def forward(self, question): context = retrieve_context(question) return self.predictor(question=question, context=context) model = RagMod() def answer(question): out = model(question) return out.answer def load_dataset(path): with open(path, "r", encoding="utf-8") as f: return [Example(**json.loads(l)).with_inputs("question") for l in f] def optimize(train_file, val_file): global model trainset = load_dataset(train_file.name) valset = load_dataset(val_file.name) tp = MIPROv2(metric=evaluate.answer_exact_match, auto="light", num_threads=4) optimized = tp.compile(model, trainset=trainset, valset=valset) model = optimized return "✅ تم تحسين النموذج!" with gr.Blocks() as demo: gr.Markdown("## 🧠 نظام RAG عربي باستخدام DSPy + ChromaDB + Hugging Face Inference") with gr.Tab("📥 تحميل وتخزين"): pdf_input = gr.File(label="ارفع ملف PDF", type="binary") ingest_btn = gr.Button("إضافة إلى قاعدة البيانات") ingest_out = gr.Textbox(label="نتيجة الإضافة") ingest_btn.click(ingest, inputs=pdf_input, outputs=ingest_out) with gr.Tab("❓ سؤال"): q = gr.Textbox(label="اكتب سؤالك بالعربية") answer_btn = gr.Button("احصل على الإجابة") out = gr.Textbox(label="الإجابة") answer_btn.click(answer, inputs=q, outputs=out) with gr.Tab("⚙️ تحسين النموذج"): train_file = gr.File(label="trainset.jsonl") val_file = gr.File(label="valset.jsonl") opt_btn = gr.Button("ابدأ التحسين") result = gr.Textbox(label="نتيجة التحسين") opt_btn.click(optimize, inputs=[train_file, val_file], outputs=result) demo.launch()