brain247v1 / app.py
ramysaidagieb's picture
Update app.py
d9c732d verified
raw
history blame
3.05 kB
import os
import shutil
import tempfile
import gradio as gr
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader, UnstructuredWordDocumentLoader
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.llms import LiteLLM
DB_DIR = "chroma_db"
CHUNK_SIZE = 500
CHUNK_OVERLAP = 50
def load_documents(file_path):
if file_path.endswith(".pdf"):
loader = PyPDFLoader(file_path)
elif file_path.endswith(".docx") or file_path.endswith(".doc"):
loader = UnstructuredWordDocumentLoader(file_path)
else:
raise ValueError("Unsupported file type. Only PDF and DOCX are supported.")
return loader.load()
def create_vector_store(documents):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
vectordb = Chroma.from_documents(texts, embedding=embeddings, persist_directory=DB_DIR)
vectordb.persist()
return vectordb
def process_file(file):
temp_path = file.name
target_path = os.path.join(tempfile.gettempdir(), os.path.basename(temp_path))
if os.path.abspath(temp_path) != os.path.abspath(target_path):
shutil.copy(temp_path, target_path)
documents = load_documents(target_path)
if os.path.exists(DB_DIR):
shutil.rmtree(DB_DIR)
vectordb = create_vector_store(documents)
return "✅ تم معالجة الملف بنجاح. يمكنك الآن كتابة سؤالك."
def ask_question(question):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
vectordb = Chroma(persist_directory=DB_DIR, embedding_function=embeddings)
retriever = vectordb.as_retriever()
llm = LiteLLM(model="mistralai/Mistral-7B-Instruct-v0.2") # لا حاجة لمفتاح API
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
result = qa_chain.run(question)
return result
with gr.Blocks(title="Smart PDF Assistant") as demo:
gr.Markdown("### 🤖 مساعد الكتب الذكي - اسأل أي سؤال بناءً على ملف PDF أو DOCX")
with gr.Row():
file_input = gr.File(label="📄 ارفع ملف PDF أو DOCX", file_types=[".pdf", ".docx", ".doc"])
file_status = gr.Textbox(label="حالة الملف", interactive=False)
with gr.Row():
question_input = gr.Textbox(label="❓ اكتب سؤالك هنا", placeholder="ما هو إيمان الكنيسة؟")
answer_output = gr.Textbox(label="📘 الإجابة", lines=8)
file_input.change(process_file, inputs=file_input, outputs=file_status)
question_input.submit(ask_question, inputs=question_input, outputs=answer_output)
demo.launch()