Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,110 +1,81 @@
|
|
1 |
-
import
|
2 |
-
import shutil
|
3 |
-
import tempfile
|
4 |
-
from langchain_community.llms import CTransformers
|
5 |
-
from langchain.chains import RetrievalQA
|
6 |
-
from langchain.prompts import PromptTemplate
|
7 |
-
from langchain.vectorstores import Chroma
|
8 |
-
from langchain.embeddings import SentenceTransformerEmbeddings
|
9 |
-
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
from
|
12 |
-
from
|
13 |
-
import
|
|
|
14 |
import gradio as gr
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
llm =
|
18 |
-
|
19 |
model_file="mistral-7b-instruct-v0.2.Q4_K_M.gguf",
|
20 |
model_type="mistral",
|
21 |
config={
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
"gpu_layers": 20,
|
26 |
}
|
27 |
)
|
28 |
|
29 |
-
#
|
30 |
-
embedding_function = SentenceTransformerEmbeddings(model_name="sentence-transformers/
|
31 |
-
|
32 |
-
# تحميل المستندات وإنشاء قاعدة معرفية
|
33 |
-
def load_documents_from_folder(folder_path):
|
34 |
-
documents = []
|
35 |
-
for filename in os.listdir(folder_path):
|
36 |
-
full_path = os.path.join(folder_path, filename)
|
37 |
-
if filename.endswith(".pdf"):
|
38 |
-
loader = PyPDFLoader(full_path)
|
39 |
-
elif filename.endswith(".docx"):
|
40 |
-
loader = Docx2txtLoader(full_path)
|
41 |
-
elif filename.endswith(".txt"):
|
42 |
-
loader = TextLoader(full_path)
|
43 |
-
else:
|
44 |
-
continue
|
45 |
-
docs = loader.load()
|
46 |
-
documents.extend(docs)
|
47 |
-
return documents
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
chunks = splitter.split_documents(docs)
|
52 |
-
return Chroma.from_documents(chunks, embedding_function)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
def
|
59 |
-
|
60 |
-
docs
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
أنت مساعد ذكي تجيب باللغة العربية، تستند فقط إلى محتوى الوثائق المقدمة.
|
66 |
-
لا تقم بإضافة أي معلومات من عندك.
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
=========
|
73 |
-
الإجابة المفصلة باللغة العربية:
|
74 |
-
"""
|
75 |
|
76 |
-
prompt = PromptTemplate(template=prompt_template, input_variables=["question", "context"])
|
77 |
-
qa = RetrievalQA.from_chain_type(llm=llm, retriever=retriever, chain_type_kwargs={"prompt": prompt})
|
78 |
-
|
79 |
-
# تحميل الملفات من Gradio
|
80 |
-
def process_uploaded_files(files):
|
81 |
-
temp_dir = tempfile.mkdtemp()
|
82 |
-
for file in files:
|
83 |
-
dest_path = os.path.join(temp_dir, file.name)
|
84 |
-
with open(dest_path, "wb") as f:
|
85 |
-
f.write(file.read())
|
86 |
-
setup_qa(temp_dir)
|
87 |
-
shutil.rmtree(temp_dir)
|
88 |
-
|
89 |
-
# الإجابة على الأسئلة
|
90 |
def answer_question(question):
|
91 |
-
if
|
92 |
-
return "
|
93 |
-
|
94 |
-
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
gr.
|
|
|
|
|
|
|
99 |
with gr.Row():
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
answer_output = gr.Textbox(label="الإجابة")
|
104 |
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
if __name__ == "__main__":
|
110 |
-
demo.launch()
|
|
|
1 |
+
from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.embeddings import SentenceTransformerEmbeddings
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from ctransformers import AutoModelForCausalLM
|
7 |
import gradio as gr
|
8 |
+
import os
|
9 |
+
import tempfile
|
10 |
|
11 |
+
# Load the model (CPU-only)
|
12 |
+
llm = AutoModelForCausalLM.from_pretrained(
|
13 |
+
model_path_or_repo_id="TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
|
14 |
model_file="mistral-7b-instruct-v0.2.Q4_K_M.gguf",
|
15 |
model_type="mistral",
|
16 |
config={
|
17 |
+
'max_new_tokens': 512,
|
18 |
+
'temperature': 0.5,
|
19 |
+
'gpu_layers': 0 # Disable GPU
|
|
|
20 |
}
|
21 |
)
|
22 |
|
23 |
+
# Embedding model
|
24 |
+
embedding_function = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Temp folder for uploading documents
|
27 |
+
persist_directory = tempfile.mkdtemp()
|
|
|
|
|
28 |
|
29 |
+
def load_file(file):
|
30 |
+
ext = os.path.splitext(file.name)[1].lower()
|
31 |
+
if ext == ".pdf":
|
32 |
+
loader = PyPDFLoader(file.name)
|
33 |
+
elif ext == ".docx":
|
34 |
+
loader = Docx2txtLoader(file.name)
|
35 |
+
elif ext == ".txt":
|
36 |
+
loader = TextLoader(file.name)
|
37 |
+
else:
|
38 |
+
return None
|
39 |
+
return loader.load()
|
40 |
|
41 |
+
def process_document(file):
|
42 |
+
docs = load_file(file)
|
43 |
+
if docs is None:
|
44 |
+
return "صيغة غير مدعومة."
|
45 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
46 |
+
texts = text_splitter.split_documents(docs)
|
47 |
+
vectordb = Chroma.from_documents(texts, embedding_function, persist_directory=persist_directory)
|
48 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
49 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
50 |
+
return qa_chain
|
51 |
|
52 |
+
qa_chain = None
|
|
|
|
|
53 |
|
54 |
+
def upload_file(file):
|
55 |
+
global qa_chain
|
56 |
+
qa_chain = process_document(file)
|
57 |
+
return "تم رفع الملف ومعالجته بنجاح. يمكنك الآن طرح سؤالك."
|
|
|
|
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def answer_question(question):
|
60 |
+
if qa_chain is None:
|
61 |
+
return "يرجى رفع ملف أولاً."
|
62 |
+
result = qa_chain({"query": question})
|
63 |
+
answer = result["result"]
|
64 |
+
sources = "\n\n".join([doc.page_content[:200] for doc in result["source_documents"]])
|
65 |
+
return f"🧠 الإجابة:\n{answer}\n\n📚 المراجع:\n{sources}"
|
66 |
|
67 |
+
with gr.Blocks() as demo:
|
68 |
+
gr.Markdown("# 📄 Smart PDF Assistant\nنظام سؤال وجواب من ملفات PDF وورد ونصوص")
|
69 |
+
with gr.Row():
|
70 |
+
file_upload = gr.File(label="📂 ارفع مستند", type="file")
|
71 |
+
upload_button = gr.Button("معالجة الملف")
|
72 |
+
output = gr.Textbox(label="✅ الحالة")
|
73 |
with gr.Row():
|
74 |
+
question = gr.Textbox(label="✍️ اكتب سؤالك هنا")
|
75 |
+
answer = gr.Button("📤 إرسال")
|
76 |
+
response = gr.Textbox(label="🤖 الإجابة", lines=10)
|
|
|
77 |
|
78 |
+
upload_button.click(fn=upload_file, inputs=file_upload, outputs=output)
|
79 |
+
answer.click(fn=answer_question, inputs=question, outputs=response)
|
80 |
|
81 |
+
demo.launch()
|
|
|
|