Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,72 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import shutil
|
3 |
-
import gradio as gr
|
4 |
-
|
5 |
-
from langchain_community.document_loaders import PyPDFLoader
|
6 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
-
from langchain.vectorstores import Chroma
|
8 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
9 |
-
from langchain.chains import RetrievalQA
|
10 |
-
from langchain_community.llms import HuggingFaceHub
|
11 |
-
|
12 |
-
# إعداد مجلد الحفظ
|
13 |
-
os.makedirs("docs", exist_ok=True)
|
14 |
-
|
15 |
-
# نسخ آمن للملف لتفادي الخطأ
|
16 |
-
def safe_copy(src_path, dst_folder="docs"):
|
17 |
-
filename = os.path.basename(src_path)
|
18 |
-
dst_path = os.path.join(dst_folder, filename)
|
19 |
-
if os.path.abspath(src_path) != os.path.abspath(dst_path):
|
20 |
-
shutil.copy(src_path, dst_path)
|
21 |
-
return dst_path
|
22 |
-
|
23 |
-
# تحميل ومعالجة الملف
|
24 |
-
def process_file(file):
|
25 |
-
try:
|
26 |
-
file_path = safe_copy(file.name)
|
27 |
-
loader = PyPDFLoader(file_path)
|
28 |
-
pages = loader.load_and_split()
|
29 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
30 |
-
texts = text_splitter.split_documents(pages)
|
31 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
32 |
-
db = Chroma.from_documents(texts, embeddings)
|
33 |
-
retriever = db.as_retriever(search_kwargs={"k": 3})
|
34 |
-
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.2", model_kwargs={"temperature":0.5, "max_new_tokens":512})
|
35 |
-
qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
36 |
-
return qa_chain, "تم تحميل الملف بنجاح، يمكنك الآن طرح الأسئلة."
|
37 |
-
except Exception as e:
|
38 |
-
return None, f"حدث خطأ: {e}"
|
39 |
-
|
40 |
-
# متغير عالمي للاحتفاظ بالسلسلة
|
41 |
-
qa_chain = None
|
42 |
-
|
43 |
-
# الدالة التي تجيب على السؤال
|
44 |
-
def answer_question(question):
|
45 |
-
if qa_chain is None:
|
46 |
-
return "الرجاء رفع ملف أولاً."
|
47 |
-
result = qa_chain({"query": question})
|
48 |
-
answer = result["result"]
|
49 |
-
sources = "\n".join([doc.metadata.get("source", "") for doc in result["source_documents"]])
|
50 |
-
return f"🔹 **الإجابة:**\n{answer}\n\n🔹 **المصدر:**\n{sources}"
|
51 |
-
|
52 |
-
# واجهة Gradio
|
53 |
-
with gr.Blocks(title="Smart PDF Assistant") as demo:
|
54 |
-
gr.Markdown("## 🤖 مساعد الكتب الذكي - Smart PDF Assistant")
|
55 |
-
file_input = gr.File(label="📄 ارفع ملف PDF", type="file")
|
56 |
-
upload_button = gr.Button("🔁 تحميل الملف ومعالجته")
|
57 |
-
status_output = gr.Textbox(label="📢 حالة التحميل", interactive=False)
|
58 |
-
|
59 |
-
question_input = gr.Textbox(label="❓ اكتب سؤالك هنا")
|
60 |
-
answer_output = gr.Markdown(label="📘 الإجابة")
|
61 |
-
|
62 |
-
def handle_upload(file):
|
63 |
-
global qa_chain
|
64 |
-
qa_chain, status = process_file(file)
|
65 |
-
return status
|
66 |
-
|
67 |
-
upload_button.click(fn=handle_upload, inputs=[file_input], outputs=[status_output])
|
68 |
-
question_input.submit(fn=answer_question, inputs=[question_input], outputs=[answer_output])
|
69 |
-
|
70 |
-
# شغّل التطبيق
|
71 |
-
if __name__ == "__main__":
|
72 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|