Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,60 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from langchain_community.vectorstores import Chroma
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain.llms import HuggingFaceHub
|
9 |
+
from langchain.prompts import PromptTemplate
|
10 |
+
from huggingface_hub import login
|
11 |
+
|
12 |
+
# اختياري: تسجيل الدخول إذا كنت تستخدم مفتاح API
|
13 |
+
# login(token="your_huggingface_token")
|
14 |
+
|
15 |
+
def process_pdf_and_answer(pdf_path, question):
|
16 |
+
# تحميل ملف PDF
|
17 |
+
loader = PyPDFLoader(pdf_path)
|
18 |
+
pages = loader.load()
|
19 |
+
|
20 |
+
# تقسيم النصوص
|
21 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
22 |
+
texts = text_splitter.split_documents(pages)
|
23 |
+
|
24 |
+
# التضمين Embeddings
|
25 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
26 |
+
vectorstore = Chroma.from_documents(texts, embedding=embeddings)
|
27 |
+
|
28 |
+
# إعداد LLM
|
29 |
+
llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature": 0.1, "max_new_tokens": 512})
|
30 |
+
|
31 |
+
# إعداد RAG
|
32 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever(), return_source_documents=True)
|
33 |
+
|
34 |
+
# تنفيذ السؤال
|
35 |
+
result = qa_chain({"query": question})
|
36 |
+
answer = result["result"]
|
37 |
+
return answer
|
38 |
+
|
39 |
+
# واجهة Gradio
|
40 |
+
with gr.Blocks() as demo:
|
41 |
+
gr.Markdown("## 🧠 مساعد PDF الذكي")
|
42 |
+
|
43 |
+
with gr.Row():
|
44 |
+
file_input = gr.File(label="📄 ارفع ملف PDF", type="filepath", file_types=[".pdf"])
|
45 |
+
|
46 |
+
question_input = gr.Textbox(label="❓ اكتب سؤالك هنا", placeholder="ما هو محتوى الفصل الأول؟")
|
47 |
+
output = gr.Textbox(label="📝 الإجابة", lines=10)
|
48 |
+
|
49 |
+
submit_btn = gr.Button("🔍 استخرج الإجابة")
|
50 |
+
|
51 |
+
def handle_submit(file, question):
|
52 |
+
if file is None or question.strip() == "":
|
53 |
+
return "يرجى رفع ملف PDF وكتابة سؤال."
|
54 |
+
return process_pdf_and_answer(file, question)
|
55 |
+
|
56 |
+
submit_btn.click(handle_submit, inputs=[file_input, question_input], outputs=output)
|
57 |
+
|
58 |
+
# لتشغيل التطبيق
|
59 |
+
if __name__ == "__main__":
|
60 |
+
demo.launch()
|