ramysaidagieb commited on
Commit
b06c716
·
verified ·
1 Parent(s): 008cc56

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -45
app.py DELETED
@@ -1,45 +0,0 @@
1
- import os
2
- import gradio as gr
3
- from langchain.document_loaders import PyPDFLoader
4
- from langchain.vectorstores import Chroma
5
- from langchain.embeddings import HuggingFaceEmbeddings
6
- from langchain.text_splitter import RecursiveCharacterTextSplitter
7
- from langchain.llms import HuggingFaceHub
8
- from langchain.chains import RetrievalQA
9
-
10
- DB_DIR = "chroma_db"
11
- embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
12
- llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.2", model_kwargs={"temperature":0.3, "max_new_tokens":500})
13
-
14
- def load_and_index(files):
15
- all_texts = []
16
- for file in files:
17
- loader = PyPDFLoader(file.name)
18
- docs = loader.load()
19
- splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
20
- texts = splitter.split_documents(docs)
21
- all_texts.extend(texts)
22
- vectordb = Chroma.from_documents(all_texts, embedding=embedding_model, persist_directory=DB_DIR)
23
- vectordb.persist()
24
- return "✅ تم تحميل وفهرسة الملفات."
25
-
26
- def answer_question(query):
27
- vectordb = Chroma(persist_directory=DB_DIR, embedding_function=embedding_model)
28
- qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectordb.as_retriever())
29
- answer = qa_chain.run(query)
30
- return answer
31
-
32
- with gr.Blocks(title="Smart PDF Assistant") as demo:
33
- gr.Markdown("# 🤖 Smart PDF Assistant\nحمّل ملفات PDF واسأل أي سؤال 📚")
34
- with gr.Row():
35
- uploader = gr.File(file_types=[".pdf"], file_count="multiple", label="تحميل ملفات PDF")
36
- index_btn = gr.Button("فهرسة الملفات")
37
- index_output = gr.Textbox(label="حالة الفهرسة")
38
- index_btn.click(load_and_index, inputs=[uploader], outputs=[index_output])
39
-
40
- query = gr.Textbox(label="اكتب سؤالك")
41
- answer_btn = gr.Button("أجب")
42
- answer_output = gr.Textbox(label="الإجابة")
43
- answer_btn.click(answer_question, inputs=[query], outputs=[answer_output])
44
-
45
- demo.launch()