File size: 9,721 Bytes
029c0b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import gradio as gr
import os
import docx
import fitz  # PyMuPDF
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, Trainer, TrainingArguments, pipeline
from datasets import Dataset
import re
import logging
from datetime import datetime
import warnings

# Suppress FutureWarning from huggingface_hub
warnings.filterwarnings("ignore", category=FutureWarning, module="huggingface_hub.file_download")

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize tokenizer and model with error handling
model_name = "aubmindlab/bert-base-arabertv2"
try:
    logger.info(f"{datetime.now()}: Loading tokenizer for {model_name}")
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    logger.info(f"{datetime.now()}: Loading model for {model_name}")
    model = AutoModelForQuestionAnswering.from_pretrained(model_name)
except Exception as e:
    logger.error(f"{datetime.now()}: Failed to load model/tokenizer: {e}")
    raise

# Directory to save fine-tuned model
MODEL_SAVE_PATH = "./fine_tuned_model"

# Custom Arabic text preprocessing function
def preprocess_arabic_text(text):
    logger.info(f"{datetime.now()}: Preprocessing text (length: {len(text)} characters)")
    # Remove Arabic diacritics
    diacritics = re.compile(r'[\u0617-\u061A\u064B-\u0652]')
    text = diacritics.sub('', text)
    # Normalize Arabic characters
    text = re.sub(r'[أإآ]', 'ا', text)
    text = re.sub(r'ى', 'ي', text)
    text = re.sub(r'ة', 'ه', text)
    # Remove extra spaces and non-essential characters
    text = re.sub(r'\s+', ' ', text)
    text = re.sub(r'[^\w\s]', '', text)
    logger.info(f"{datetime.now()}: Text preprocessed, new length: {len(text)} characters")
    return text.strip()

# Function to extract text from .docx
def extract_text_docx(file_path):
    logger.info(f"{datetime.now()}: Extracting text from .docx file: {file_path}")
    try:
        doc = docx.Document(file_path)
        text = "\n".join([para.text for para in doc.paragraphs if para.text.strip()])
        logger.info(f"{datetime.now()}: Successfully extracted {len(text)} characters from .docx")
        return text
    except Exception as e:
        logger.error(f"{datetime.now()}: Error extracting text from .docx: {e}")
        return ""

# Function to extract text from .pdf
def extract_text_pdf(file_path):
    logger.info(f"{datetime.now()}: Extracting text from .pdf file: {file_path}")
    try:
        doc = fitz.open(file_path)
        text = ""
        for page in doc:
            text += page.get_text()
        logger.info(f"{datetime.now()}: Successfully extracted {len(text)} characters from .pdf")
        return text
    except Exception as e:
        logger.error(f"{datetime.now()}: Error extracting text from .pdf: {e}")
        return ""

# Function to chunk text for dataset
def chunk_text(text, max_length=512):
    logger.info(f"{datetime.now()}: Chunking text into segments")
    words = text.split()
    chunks = []
    current_chunk = []
    current_length = 0
    for word in words:
        current_chunk.append(word)
        current_length += len(word) + 1
        if current_length >= max_length:
            chunks.append(" ".join(current_chunk))
            current_chunk = []
            current_length = 0
    if current_chunk:
        chunks.append(" ".join(current_chunk))
    logger.info(f"{datetime.now()}: Created {len(chunks)} text chunks")
    return chunks

# Function to prepare dataset
def prepare_dataset(text):
    logger.info(f"{datetime.now()}: Preparing dataset")
    chunks = chunk_text(text)
    data = {"text": chunks}
    dataset = Dataset.from_dict(data)
    logger.info(f"{datetime.now()}: Dataset prepared with {len(dataset)} examples")
    return dataset

# Function to tokenize dataset
def tokenize_dataset(dataset):
    logger.info(f"{datetime.now()}: Tokenizing dataset")
    def tokenize_function(examples):
        return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
    tokenized_dataset = dataset.map(tokenize_function, batched=True)
    logger.info(f"{datetime.now()}: Dataset tokenized")
    return tokenized_dataset

# Function to fine-tune model
def fine_tune_model(dataset):
    logger.info(f"{datetime.now()}: Starting model fine-tuning")
    training_args = TrainingArguments(
        output_dir="./results",
        num_train_epochs=1,
        per_device_train_batch_size=4,
        save_steps=10_000,
        save_total_limit=2,
        logging_dir='./logs',
        logging_steps=200,
    )
    
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=dataset,
    )
    
    trainer.train()
    model.save_pretrained(MODEL_SAVE_PATH)
    tokenizer.save_pretrained(MODEL_SAVE_PATH)
    logger.info(f"{datetime.now()}: Model fine-tuned and saved to {MODEL_SAVE_PATH}")

# Function to handle file upload and training
def upload_and_train(files, progress=gr.Progress()):
    uploaded_files = []
    all_text = ""
    training_log = []
    
    def log_and_update(step, desc, progress_value):
        msg = f"{datetime.now()}: {desc}"
        logger.info(msg)
        training_log.append(msg)
        progress(progress_value, desc=desc)
        return "\n".join(training_log)
    
    log_and_update("Starting upload", "Loading books...", 0.1)
    for file in files:
        file_name = os.path.basename(file.name)
        uploaded_files.append(file_name)
        if file_name.endswith(".docx"):
            text = extract_text_docx(file.name)
        elif file_name.endswith(".pdf"):
            text = extract_text_pdf(file.name)
        else:
            continue
        all_text += text + "\n"
    
    if not all_text.strip():
        msg = f"{datetime.now()}: No valid text extracted from uploaded files."
        logger.error(msg)
        training_log.append(msg)
        return "\n".join(training_log), uploaded_files
    
    log_and_update("Text extraction complete", "Extracting ideas...", 0.4)
    cleaned_text = preprocess_arabic_text(all_text)
    
    log_and_update("Preprocessing complete", "Preparing dataset...", 0.6)
    dataset = prepare_dataset(cleaned_text)
    tokenized_dataset = tokenize_dataset(dataset)
    
    log_and_update("Dataset preparation complete", "Training in progress...", 0.8)
    fine_tune_model(tokenized_dataset)
    
    log_and_update("Training complete", "Training completed!", 1.0)
    
    # Example QA
    qa_pipeline = pipeline("question-answering", model=MODEL_SAVE_PATH, tokenizer=MODEL_SAVE_PATH)
    example_question = "ما هو قانون الإيمان وفقًا للكتاب؟"
    example_answer = qa_pipeline(question=example_question, context=cleaned_text[:512])["answer"]
    
    final_message = (
        f"Training process finished: Enter your question\n\n"
        f"**مثال لسؤال**: {example_question}\n"
        f"**الإجابة**: {example_answer}\n\n"
        f"**سجل التدريب**:\n" + "\n".join(training_log)
    )
    return final_message, uploaded_files

# Function to answer questions
def answer_question(question, context):
    if not os.path.exists(MODEL_SAVE_PATH):
        return "النظام لم يتم تدريبه بعد. الرجاء رفع الكتب وتدريب النظام أولاً."
    
    qa_pipeline = pipeline("question-answering", model=MODEL_SAVE_PATH, tokenizer=MODEL_SAVE_PATH)
    answer = qa_pipeline(question=question, context=context[:512])["answer"]
    return answer

# Gradio Interface with Tabs
with gr.Blocks(title="Arabic Book Analysis AI") as demo:
    gr.Markdown("# نظام ذكاء اصطناعي لتحليل الكتب باللغة العربية")
    
    with gr.Tabs():
        with gr.TabItem("التدريب والسؤال"):
            with gr.Row():
                with gr.Column():
                    file_upload = gr.File(file_types=[".docx", ".pdf"], label="رفع الكتب", file_count="multiple")
                    upload_button = gr.Button("رفع وتدريب")
                    uploaded_files = gr.Textbox(label="الكتب المرفوعة")
                
                with gr.Column():
                    training_status = gr.Textbox(label="حالة التدريب", lines=10)
            
            with gr.Row():
                question_input = gr.Textbox(label="أدخل سؤالك بالعربية", placeholder="مثال: ما هو قانون الإيمان؟")
                answer_output = gr.Textbox(label="الإجابة")
                ask_button = gr.Button("طرح السؤال")
            
            # Event handlers
            upload_button.click(
                fn=upload_and_train,
                inputs=[file_upload],
                outputs=[training_status, uploaded_files]
            )
            
            ask_button.click(
                fn=answer_question,
                inputs=[question_input, gr.State(value="")],
                outputs=[answer_output]
            )
        
        with gr.TabItem("طرح الأسئلة فقط"):
            gr.Markdown("أدخل سؤالك بالعربية وسيتم الإجابة بناءً على محتوى الكتب المدربة.")
            question_input_qa = gr.Textbox(label="أدخل سؤالك", placeholder="مثال: ما هو قانون الإيمان؟")
            answer_output_qa = gr.Textbox(label="الإجابة")
            ask_button_qa = gr.Button("طرح السؤال")
            
            ask_button_qa.click(
                fn=answer_question,
                inputs=[question_input_qa, gr.State(value="")],
                outputs=[answer_output_qa]
            )

if __name__ == "__main__":
    demo.launch()