ramysaidagieb commited on
Commit
234f1be
·
verified ·
1 Parent(s): 1b4ee2d

Delete rag_pipeline.py

Browse files
Files changed (1) hide show
  1. rag_pipeline.py +0 -43
rag_pipeline.py DELETED
@@ -1,43 +0,0 @@
1
- from sentence_transformers import SentenceTransformer
2
- from transformers import pipeline
3
- import faiss
4
- import numpy as np
5
- from config import MODEL_CONFIG
6
-
7
- class ArabicRAGSystem:
8
- def __init__(self):
9
- self.embedder = SentenceTransformer(MODEL_CONFIG["embedding_model"])
10
- self.llm = pipeline("text-generation", model=MODEL_CONFIG["llm"])
11
- self.index = None
12
- self.documents = []
13
-
14
- def build_index(self, chunks: List[str]):
15
- """Create FAISS index from document chunks"""
16
- self.documents = chunks
17
- embeddings = self.embedder.encode(chunks, show_progress_bar=True)
18
- self.index = faiss.IndexFlatIP(embeddings.shape[1])
19
- self.index.add(embeddings)
20
-
21
- def retrieve(self, query: str, k: int = 3) -> List[str]:
22
- """Retrieve relevant document chunks"""
23
- query_embedding = self.embedder.encode([query])
24
- distances, indices = self.index.search(query_embedding, k)
25
- return [self.documents[i] for i in indices[0]]
26
-
27
- def generate_answer(self, question: str, context: List[str]) -> str:
28
- """Generate answer using LLM with retrieved context"""
29
- prompt = f"""استخدم المعلومات التالية للإجابة على السؤال:
30
-
31
- السياق:
32
- {'\n'.join(context)}
33
-
34
- السؤال: {question}
35
- الإجابة:"""
36
-
37
- result = self.llm(
38
- prompt,
39
- max_new_tokens=256,
40
- temperature=0.7,
41
- do_sample=True
42
- )
43
- return result[0]["generated_text"].replace(prompt, "")