Spaces:
Runtime error
Runtime error
from sentence_transformers import CrossEncoder, SentenceTransformer | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import faiss | |
import numpy as np | |
from typing import List, Dict | |
class ArabicRAGSystem: | |
def __init__(self): | |
# Initialize models | |
self.embedding_model = SentenceTransformer("aubmindlab/bert-base-arabertv2") | |
self.cross_encoder = CrossEncoder("Arabic-Misc/roberta-base-arabic-camelbert-da-msa") | |
self.tokenizer = AutoTokenizer.from_pretrained("inception-mbzuai/jais-13b-chat") | |
self.llm = AutoModelForCausalLM.from_pretrained("inception-mbzuai/jais-13b-chat") | |
self.index = faiss.IndexFlatL2(768) | |
def _create_index(self, documents: List[Dict]): | |
texts = [doc["text"] for doc in documents] | |
embeddings = self.embedding_model.encode(texts) | |
self.index.add(np.array(embeddings)) | |
def generate_answer(self, question: str, documents: List[Dict], | |
top_k: int = 5, temperature: float = 0.7) -> tuple: | |
# Indexing phase | |
self._create_index(documents) | |
# Two-stage retrieval | |
query_embedding = self.embedding_model.encode([question]) | |
distances, indices = self.index.search(query_embedding, top_k*2) | |
# Re-ranking with cross-encoder | |
pairs = [[question, documents[idx]["text"]] for idx in indices[0]] | |
scores = self.cross_encoder.predict(pairs) | |
ranked_indices = np.argsort(scores)[::-1][:top_k] | |
# Prepare context | |
context = "\n\n".join([ | |
f"المصدر: {documents[idx]['source']}\n" | |
f"الصفحة: {documents[idx]['page']}\n" | |
f"النص: {documents[idx]['text']}" | |
for idx in [indices[0][i] for i in ranked_indices] | |
]) | |
# Generate answer | |
prompt = f""" | |
أنت خبير في التحليل الديني. قم بالإجابة على السؤال التالي بناءً على السياق المقدم فقط: | |
السياق: | |
{context} | |
السؤال: | |
{question} | |
التعليمات: | |
- أجب باللغة العربية الفصحى | |
- استخدم علامات التنسيق المناسبة | |
- أشر إلى المصادر باستخدام التنسيق [المصدر: اسم الملف، الصفحة: رقم] | |
- إذا لم توجد إجابة واضحة، قل "لا تتوفر معلومات كافية" | |
الإجابة: | |
""".strip() | |
inputs = self.tokenizer(prompt, return_tensors="pt") | |
outputs = self.llm.generate( | |
inputs.input_ids, | |
max_new_tokens=512, | |
temperature=temperature, | |
do_sample=True, | |
pad_token_id=self.tokenizer.eos_token_id | |
) | |
answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
answer = answer.split("الإجابة:")[-1].strip() | |
# Prepare sources | |
sources = [] | |
for idx in [indices[0][i] for i in ranked_indices]: | |
sources.append({ | |
"text": documents[idx]["text"], | |
"source": documents[idx]["source"], | |
"page": documents[idx]["page"], | |
"score": float(scores[idx]) | |
}) | |
return answer, sources |