Spaces:
Runtime error
Runtime error
Update rag_pipeline.py
Browse files- rag_pipeline.py +26 -72
rag_pipeline.py
CHANGED
@@ -6,80 +6,34 @@ from typing import List, Dict
|
|
6 |
|
7 |
class ArabicRAGSystem:
|
8 |
def __init__(self):
|
9 |
-
"""Initialize with
|
10 |
-
# Verified embedding
|
11 |
-
self.embedding_model = SentenceTransformer(
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def generate_answer(self, question: str, documents: List[Dict],
|
27 |
top_k: int = 3, temperature: float = 0.7) -> tuple:
|
28 |
-
"""
|
29 |
-
#
|
30 |
texts = [doc["text"] for doc in documents]
|
31 |
-
self.
|
32 |
-
|
33 |
-
# Simple semantic search (no cross-encoder dependency)
|
34 |
-
query_embedding = self.embedding_model.encode([question])
|
35 |
-
distances, indices = self.index.search(query_embedding, top_k)
|
36 |
-
|
37 |
-
# Prepare context with metadata
|
38 |
-
context = "\n\n".join([
|
39 |
-
f"المرجع: {documents[idx]['source']}\n"
|
40 |
-
f"الصفحة: {documents[idx].get('page', 'N/A')}\n"
|
41 |
-
f"النص: {documents[idx]['text']}\n"
|
42 |
-
for idx in indices[0]
|
43 |
-
])
|
44 |
-
|
45 |
-
# Generation with bulletproof prompt
|
46 |
-
prompt = f"""
|
47 |
-
أنت مساعد ذكي متخصص في النصوص الدينية العربية. أجب على السؤال بناءً على السياق التالي فقط:
|
48 |
-
|
49 |
-
السياق:
|
50 |
-
{context}
|
51 |
-
|
52 |
-
السؤال: {question}
|
53 |
-
|
54 |
-
التعليمات:
|
55 |
-
1. استخدم المعلومات من السياق فقط
|
56 |
-
2. أجب باللغة العربية الفصحى
|
57 |
-
3. أشر إلى المصادر بهذا الشكل: [المرجع: اسم الملف، الصفحة]
|
58 |
-
4. إذا لم تجد إجابة واضحة قل "لا توجد معلومات كافية في النصوص المقدمة"
|
59 |
-
|
60 |
-
الإجابة:
|
61 |
-
""".strip()
|
62 |
-
|
63 |
-
try:
|
64 |
-
inputs = self.tokenizer(prompt, return_tensors="pt")
|
65 |
-
outputs = self.llm.generate(
|
66 |
-
inputs.input_ids,
|
67 |
-
max_new_tokens=512,
|
68 |
-
temperature=temperature,
|
69 |
-
do_sample=True,
|
70 |
-
pad_token_id=self.tokenizer.eos_token_id
|
71 |
-
)
|
72 |
-
answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
73 |
-
answer = answer.split("الإجابة:")[-1].strip()
|
74 |
-
except Exception as e:
|
75 |
-
answer = f"عذراً، حدث خطأ في معالجة السؤال. التفاصيل: {str(e)}"
|
76 |
-
|
77 |
-
# Prepare sources
|
78 |
-
sources = [{
|
79 |
-
"text": documents[idx]["text"],
|
80 |
-
"source": documents[idx]["source"],
|
81 |
-
"page": documents[idx].get("page", "N/A"),
|
82 |
-
"score": float(1 - distances[0][i])
|
83 |
-
} for i, idx in enumerate(indices[0])]
|
84 |
|
85 |
-
|
|
|
|
6 |
|
7 |
class ArabicRAGSystem:
|
8 |
def __init__(self):
|
9 |
+
"""Initialize with dependency-safe models"""
|
10 |
+
# Verified working embedding model
|
11 |
+
self.embedding_model = SentenceTransformer(
|
12 |
+
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
13 |
+
device="cpu"
|
14 |
+
)
|
15 |
+
|
16 |
+
# Load Arabic LLM with safe tokenizer settings
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
18 |
+
"aubmindlab/aragpt2-base",
|
19 |
+
use_safetensors=True
|
20 |
+
)
|
21 |
+
self.llm = AutoModelForCausalLM.from_pretrained(
|
22 |
+
"aubmindlab/aragpt2-base",
|
23 |
+
use_safetensors=True,
|
24 |
+
device_map="auto",
|
25 |
+
torch_dtype="auto"
|
26 |
+
)
|
27 |
+
|
28 |
+
self.index = faiss.IndexFlatL2(384) # Matching embedding dim
|
29 |
|
30 |
def generate_answer(self, question: str, documents: List[Dict],
|
31 |
top_k: int = 3, temperature: float = 0.7) -> tuple:
|
32 |
+
"""Optimized generation with memory safety"""
|
33 |
+
# Convert documents to embeddings
|
34 |
texts = [doc["text"] for doc in documents]
|
35 |
+
embeddings = self.embedding_model.encode(texts, convert_to_numpy=True)
|
36 |
+
self.index.add(embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Semantic search
|
39 |
+
query_embedding = self.embedding_model
|