Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,166 +1,357 @@
|
|
1 |
-
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import os
|
5 |
-
import
|
6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# ------------------- Black & White Converter Functions ------------------- #
|
9 |
def convert_to_black_white(image, threshold_value=127, method="otsu"):
|
10 |
-
"""Convert image to black and white using
|
11 |
-
|
12 |
-
|
13 |
-
# Handle RGB or RGBA to BGR conversion
|
14 |
-
if image.shape[2] == 4: # RGBA
|
15 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGBA2BGR)
|
16 |
-
elif image.shape[2] == 3: # RGB
|
17 |
-
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
18 |
|
19 |
-
# Convert to grayscale
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
-
# Apply thresholding based on method
|
23 |
if method == "adaptive":
|
24 |
binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
25 |
-
|
26 |
elif method == "otsu":
|
27 |
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
28 |
-
else:
|
29 |
_, binary = cv2.threshold(gray, threshold_value, 255, cv2.THRESH_BINARY)
|
30 |
|
31 |
return binary
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# ------------------- Pencil Sketch Converter Functions ------------------- #
|
34 |
-
def
|
35 |
-
"""
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Convert to grayscale
|
45 |
-
gray = cv2.cvtColor(
|
46 |
|
47 |
-
#
|
48 |
inverted = cv2.bitwise_not(gray)
|
49 |
-
|
50 |
-
# Ensure kernel size is odd
|
51 |
-
blur_ksize = blur_ksize if blur_ksize % 2 == 1 else blur_ksize + 1
|
52 |
-
|
53 |
-
# Apply Gaussian blur to the inverted image
|
54 |
blurred = cv2.GaussianBlur(inverted, (blur_ksize, blur_ksize), sigma)
|
55 |
-
|
56 |
-
# Blend the grayscale image with the blurred inverse
|
57 |
sketch = cv2.divide(gray, cv2.bitwise_not(blurred), scale=intensity)
|
58 |
|
59 |
-
return sketch
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
"""Main function for sketch processing"""
|
71 |
-
if image is None:
|
72 |
-
return None
|
73 |
-
result = convert_to_sketch(image, intensity, blur_ksize, sigma)
|
74 |
-
return result
|
75 |
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
def update_threshold_visibility(method):
|
102 |
-
"""Show/hide threshold slider based on method selection"""
|
103 |
-
return gr.update(visible=(method == "manual"))
|
104 |
-
|
105 |
-
# Connect components
|
106 |
-
bw_method.change(
|
107 |
-
fn=update_threshold_visibility,
|
108 |
-
inputs=bw_method,
|
109 |
-
outputs=bw_threshold
|
110 |
-
)
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
with gr.Column():
|
121 |
-
sketch_input = gr.Image(label="Input Image")
|
122 |
-
sketch_intensity = gr.Slider(
|
123 |
-
minimum=1,
|
124 |
-
maximum=255,
|
125 |
-
value=255,
|
126 |
-
step=1,
|
127 |
-
label="Intensity (1-255)"
|
128 |
-
)
|
129 |
-
sketch_blur = gr.Slider(
|
130 |
-
minimum=1,
|
131 |
-
maximum=99,
|
132 |
-
value=21,
|
133 |
-
step=2,
|
134 |
-
label="Blur Kernel Size (odd values from 1-99)"
|
135 |
-
)
|
136 |
-
sketch_sigma = gr.Slider(
|
137 |
-
minimum=0,
|
138 |
-
maximum=50,
|
139 |
-
value=0,
|
140 |
-
step=0.1,
|
141 |
-
label="Standard Deviation (0-50)"
|
142 |
-
)
|
143 |
-
sketch_button = gr.Button("Convert to Pencil Sketch")
|
144 |
-
|
145 |
-
with gr.Column():
|
146 |
-
sketch_output = gr.Image(label="Output Image")
|
147 |
-
|
148 |
-
# Connect components
|
149 |
-
sketch_button.click(
|
150 |
-
fn=process_sketch,
|
151 |
-
inputs=[sketch_input, sketch_intensity, sketch_blur, sketch_sigma],
|
152 |
-
outputs=sketch_output
|
153 |
-
)
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
#
|
166 |
-
|
|
|
|
|
|
1 |
import cv2
|
2 |
import numpy as np
|
3 |
import os
|
4 |
+
import gradio as gr
|
5 |
from PIL import Image
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
# Enable OpenCL for better performance if available
|
9 |
+
try:
|
10 |
+
cv2.ocl.setUseOpenCL(True)
|
11 |
+
except:
|
12 |
+
pass # OpenCL might not be available in all environments
|
13 |
|
14 |
# ------------------- Black & White Converter Functions ------------------- #
|
15 |
def convert_to_black_white(image, threshold_value=127, method="otsu"):
|
16 |
+
"""Convert image to black and white using specified thresholding method"""
|
17 |
+
if isinstance(image, str):
|
18 |
+
image = cv2.imread(image)
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Convert to grayscale if not already
|
21 |
+
if len(image.shape) == 3:
|
22 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
23 |
+
else:
|
24 |
+
gray = image
|
25 |
|
|
|
26 |
if method == "adaptive":
|
27 |
binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
28 |
+
cv2.THRESH_BINARY, 11, 2)
|
29 |
elif method == "otsu":
|
30 |
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
31 |
+
else:
|
32 |
_, binary = cv2.threshold(gray, threshold_value, 255, cv2.THRESH_BINARY)
|
33 |
|
34 |
return binary
|
35 |
|
36 |
+
def process_image_bw(image, threshold_method, threshold_value):
|
37 |
+
"""Process image with black and white thresholding for Gradio"""
|
38 |
+
if image is None:
|
39 |
+
raise gr.Error("No image provided")
|
40 |
+
|
41 |
+
if threshold_method != "manual":
|
42 |
+
threshold_value = 0 # Not used for adaptive or Otsu
|
43 |
+
|
44 |
+
# Convert to numpy array if PIL Image
|
45 |
+
if isinstance(image, Image.Image):
|
46 |
+
image_np = np.array(image)
|
47 |
+
# Convert RGB to BGR for OpenCV
|
48 |
+
if len(image_np.shape) == 3:
|
49 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
50 |
+
else:
|
51 |
+
image_np = image
|
52 |
+
|
53 |
+
result = convert_to_black_white(image_np, threshold_value, threshold_method)
|
54 |
+
return Image.fromarray(result)
|
55 |
+
|
56 |
+
def process_video_bw(video_path, threshold_method, threshold_value):
|
57 |
+
"""Process video with black and white filter for Gradio"""
|
58 |
+
if video_path is None:
|
59 |
+
raise gr.Error("No video provided")
|
60 |
+
|
61 |
+
if threshold_method != "manual":
|
62 |
+
threshold_value = 0 # Not used for adaptive or Otsu
|
63 |
+
|
64 |
+
try:
|
65 |
+
cap = cv2.VideoCapture(video_path)
|
66 |
+
if not cap.isOpened():
|
67 |
+
raise gr.Error("Could not open video file")
|
68 |
+
|
69 |
+
# Get video properties
|
70 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
71 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
72 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
73 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
74 |
+
|
75 |
+
# Create temporary output file
|
76 |
+
temp_output = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
77 |
+
output_path = temp_output.name
|
78 |
+
temp_output.close()
|
79 |
+
|
80 |
+
# Create video writer
|
81 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height), isColor=False)
|
82 |
+
|
83 |
+
# Process each frame
|
84 |
+
while cap.isOpened():
|
85 |
+
ret, frame = cap.read()
|
86 |
+
if not ret:
|
87 |
+
break
|
88 |
+
|
89 |
+
bw_frame = convert_to_black_white(frame, threshold_value, threshold_method)
|
90 |
+
out.write(bw_frame)
|
91 |
+
|
92 |
+
cap.release()
|
93 |
+
out.release()
|
94 |
+
|
95 |
+
return output_path
|
96 |
+
except Exception as e:
|
97 |
+
raise gr.Error(f"Error processing video: {str(e)}")
|
98 |
+
|
99 |
# ------------------- Pencil Sketch Converter Functions ------------------- #
|
100 |
+
def process_image_sketch(image, intensity, blur_ksize, sigma):
|
101 |
+
"""Process image with pencil sketch effect for Gradio"""
|
102 |
+
if image is None:
|
103 |
+
raise gr.Error("No image provided")
|
104 |
+
|
105 |
+
# Convert to numpy array if PIL Image
|
106 |
+
if isinstance(image, Image.Image):
|
107 |
+
image_np = np.array(image)
|
108 |
+
# Convert RGB to BGR for OpenCV
|
109 |
+
if len(image_np.shape) == 3:
|
110 |
+
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
111 |
+
else:
|
112 |
+
image_np = image
|
113 |
|
114 |
# Convert to grayscale
|
115 |
+
gray = cv2.cvtColor(image_np, cv2.COLOR_BGR2GRAY) if len(image_np.shape) == 3 else image_np
|
116 |
|
117 |
+
# Create sketch effect
|
118 |
inverted = cv2.bitwise_not(gray)
|
119 |
+
blur_ksize = blur_ksize if blur_ksize % 2 == 1 else blur_ksize + 1 # Ensure kernel size is odd
|
|
|
|
|
|
|
|
|
120 |
blurred = cv2.GaussianBlur(inverted, (blur_ksize, blur_ksize), sigma)
|
|
|
|
|
121 |
sketch = cv2.divide(gray, cv2.bitwise_not(blurred), scale=intensity)
|
122 |
|
123 |
+
return Image.fromarray(sketch)
|
124 |
|
125 |
+
def process_video_sketch(video_path, intensity, blur_ksize, sigma):
|
126 |
+
"""Process video with pencil sketch effect for Gradio"""
|
127 |
+
if video_path is None:
|
128 |
+
raise gr.Error("No video provided")
|
129 |
+
|
130 |
+
try:
|
131 |
+
cap = cv2.VideoCapture(video_path)
|
132 |
+
if not cap.isOpened():
|
133 |
+
raise gr.Error("Could not open video file")
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
# Get video properties
|
136 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
137 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
138 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
139 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
140 |
+
|
141 |
+
# Create temporary output file
|
142 |
+
temp_output = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
|
143 |
+
output_path = temp_output.name
|
144 |
+
temp_output.close()
|
145 |
+
|
146 |
+
# Create video writer
|
147 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height), isColor=True)
|
148 |
+
|
149 |
+
# Process each frame
|
150 |
+
while cap.isOpened():
|
151 |
+
ret, frame = cap.read()
|
152 |
+
if not ret:
|
153 |
+
break
|
154 |
+
|
155 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
156 |
+
inverted = cv2.bitwise_not(gray)
|
157 |
+
blur_ksize_adj = blur_ksize if blur_ksize % 2 == 1 else blur_ksize + 1
|
158 |
+
blurred = cv2.GaussianBlur(inverted, (blur_ksize_adj, blur_ksize_adj), sigma)
|
159 |
+
sketch = cv2.divide(gray, cv2.bitwise_not(blurred), scale=intensity)
|
160 |
+
sketch_bgr = cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR)
|
161 |
+
out.write(sketch_bgr)
|
162 |
|
163 |
+
cap.release()
|
164 |
+
out.release()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
return output_path
|
167 |
+
except Exception as e:
|
168 |
+
raise gr.Error(f"Error processing video: {str(e)}")
|
169 |
+
|
170 |
+
# ------------------- Create Gradio Interface ------------------- #
|
171 |
+
def update_blur(value):
|
172 |
+
"""Ensure blur kernel size is always odd"""
|
173 |
+
return value if value % 2 == 1 else value + 1
|
174 |
+
|
175 |
+
def create_interface():
|
176 |
+
# App title and description
|
177 |
+
title = "Image & Video Processor"
|
178 |
+
description = """
|
179 |
+
# Image and Video Processing App
|
180 |
|
181 |
+
This app provides tools to convert images and videos to black & white or pencil sketch styles.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
+
## Features:
|
184 |
+
- **Black & White Conversion**: Apply different thresholding methods
|
185 |
+
- **Pencil Sketch Effect**: Create artistic pencil drawings with customizable parameters
|
186 |
+
- **Support for both images and videos**
|
187 |
|
188 |
+
Made with ❤️ using Gradio and OpenCV
|
189 |
+
"""
|
190 |
|
191 |
+
# Black and White Image Interface
|
192 |
+
with gr.Blocks(title=title) as app:
|
193 |
+
gr.Markdown(description)
|
194 |
+
|
195 |
+
with gr.Tab("Black & White Converter"):
|
196 |
+
with gr.Tab("Image"):
|
197 |
+
with gr.Row():
|
198 |
+
with gr.Column():
|
199 |
+
bw_image_input = gr.Image(label="Input Image", type="numpy")
|
200 |
+
bw_method = gr.Radio(
|
201 |
+
choices=["otsu", "adaptive", "manual"],
|
202 |
+
value="otsu",
|
203 |
+
label="Thresholding Method"
|
204 |
+
)
|
205 |
+
bw_threshold = gr.Slider(
|
206 |
+
minimum=0,
|
207 |
+
maximum=255,
|
208 |
+
value=127,
|
209 |
+
step=1,
|
210 |
+
label="Manual Threshold (0-255)",
|
211 |
+
interactive=True
|
212 |
+
)
|
213 |
+
bw_image_btn = gr.Button("Convert to Black & White")
|
214 |
+
|
215 |
+
with gr.Column():
|
216 |
+
bw_image_output = gr.Image(label="Processed Image")
|
217 |
+
|
218 |
+
# Show/hide threshold slider based on method
|
219 |
+
def update_threshold_visibility(method):
|
220 |
+
return gr.update(visible=(method == "manual"))
|
221 |
+
|
222 |
+
bw_method.change(fn=update_threshold_visibility, inputs=bw_method, outputs=bw_threshold)
|
223 |
+
|
224 |
+
with gr.Tab("Video"):
|
225 |
+
with gr.Row():
|
226 |
+
with gr.Column():
|
227 |
+
bw_video_input = gr.Video(label="Input Video")
|
228 |
+
bw_video_method = gr.Radio(
|
229 |
+
choices=["otsu", "adaptive", "manual"],
|
230 |
+
value="otsu",
|
231 |
+
label="Thresholding Method"
|
232 |
+
)
|
233 |
+
bw_video_threshold = gr.Slider(
|
234 |
+
minimum=0,
|
235 |
+
maximum=255,
|
236 |
+
value=127,
|
237 |
+
step=1,
|
238 |
+
label="Manual Threshold (0-255)",
|
239 |
+
interactive=True
|
240 |
+
)
|
241 |
+
bw_video_btn = gr.Button("Convert to Black & White")
|
242 |
+
|
243 |
+
with gr.Column():
|
244 |
+
bw_video_output = gr.Video(label="Processed Video")
|
245 |
+
|
246 |
+
# Show/hide threshold slider based on method
|
247 |
+
bw_video_method.change(fn=update_threshold_visibility, inputs=bw_video_method, outputs=bw_video_threshold)
|
248 |
+
|
249 |
+
with gr.Tab("Pencil Sketch Converter"):
|
250 |
+
with gr.Tab("Image"):
|
251 |
+
with gr.Row():
|
252 |
+
with gr.Column():
|
253 |
+
sketch_image_input = gr.Image(label="Input Image", type="numpy")
|
254 |
+
sketch_intensity = gr.Slider(
|
255 |
+
minimum=1,
|
256 |
+
maximum=255,
|
257 |
+
value=255,
|
258 |
+
step=1,
|
259 |
+
label="Intensity (1-255)"
|
260 |
+
)
|
261 |
+
sketch_blur = gr.Slider(
|
262 |
+
minimum=1,
|
263 |
+
maximum=99,
|
264 |
+
value=21,
|
265 |
+
step=2,
|
266 |
+
label="Blur Kernel Size (odd, 1-99)"
|
267 |
+
)
|
268 |
+
sketch_sigma = gr.Slider(
|
269 |
+
minimum=0,
|
270 |
+
maximum=50,
|
271 |
+
value=0,
|
272 |
+
step=0.1,
|
273 |
+
label="Standard Deviation (0-50)"
|
274 |
+
)
|
275 |
+
sketch_image_btn = gr.Button("Convert to Pencil Sketch")
|
276 |
+
|
277 |
+
with gr.Column():
|
278 |
+
sketch_image_output = gr.Image(label="Processed Image")
|
279 |
+
|
280 |
+
with gr.Tab("Video"):
|
281 |
+
with gr.Row():
|
282 |
+
with gr.Column():
|
283 |
+
sketch_video_input = gr.Video(label="Input Video")
|
284 |
+
sketch_video_intensity = gr.Slider(
|
285 |
+
minimum=1,
|
286 |
+
maximum=255,
|
287 |
+
value=255,
|
288 |
+
step=1,
|
289 |
+
label="Intensity (1-255)"
|
290 |
+
)
|
291 |
+
sketch_video_blur = gr.Slider(
|
292 |
+
minimum=1,
|
293 |
+
maximum=99,
|
294 |
+
value=21,
|
295 |
+
step=2,
|
296 |
+
label="Blur Kernel Size (odd, 1-99)"
|
297 |
+
)
|
298 |
+
sketch_video_sigma = gr.Slider(
|
299 |
+
minimum=0,
|
300 |
+
maximum=50,
|
301 |
+
value=0,
|
302 |
+
step=0.1,
|
303 |
+
label="Standard Deviation (0-50)"
|
304 |
+
)
|
305 |
+
sketch_video_btn = gr.Button("Convert to Pencil Sketch")
|
306 |
+
|
307 |
+
with gr.Column():
|
308 |
+
sketch_video_output = gr.Video(label="Processed Video")
|
309 |
+
|
310 |
+
# Examples section
|
311 |
+
with gr.Accordion("Examples", open=False):
|
312 |
+
gr.Markdown("""
|
313 |
+
## Example Usage:
|
314 |
+
|
315 |
+
1. **Black & White Conversion**: Great for document scanning, text enhancement, or artistic effects
|
316 |
+
2. **Pencil Sketch**: Perfect for creating artistic renderings from photos
|
317 |
+
|
318 |
+
Try uploading your own images or videos!
|
319 |
+
""")
|
320 |
+
|
321 |
+
# Set up event listeners
|
322 |
+
bw_image_btn.click(
|
323 |
+
fn=process_image_bw,
|
324 |
+
inputs=[bw_image_input, bw_method, bw_threshold],
|
325 |
+
outputs=bw_image_output
|
326 |
+
)
|
327 |
+
|
328 |
+
bw_video_btn.click(
|
329 |
+
fn=process_video_bw,
|
330 |
+
inputs=[bw_video_input, bw_video_method, bw_video_threshold],
|
331 |
+
outputs=bw_video_output
|
332 |
+
)
|
333 |
+
|
334 |
+
sketch_image_btn.click(
|
335 |
+
fn=process_image_sketch,
|
336 |
+
inputs=[sketch_image_input, sketch_intensity, sketch_blur, sketch_sigma],
|
337 |
+
outputs=sketch_image_output
|
338 |
+
)
|
339 |
+
|
340 |
+
sketch_video_btn.click(
|
341 |
+
fn=process_video_sketch,
|
342 |
+
inputs=[sketch_video_input, sketch_video_intensity, sketch_video_blur, sketch_video_sigma],
|
343 |
+
outputs=sketch_video_output
|
344 |
+
)
|
345 |
+
|
346 |
+
# Make blur slider always odd
|
347 |
+
sketch_blur.change(update_blur, sketch_blur, sketch_blur)
|
348 |
+
sketch_video_blur.change(update_blur, sketch_video_blur, sketch_video_blur)
|
349 |
+
|
350 |
+
return app
|
351 |
+
|
352 |
+
# Create and launch the app
|
353 |
+
app = create_interface()
|
354 |
|
355 |
+
# This is needed for Hugging Face Spaces
|
356 |
+
if __name__ == "__main__":
|
357 |
+
app.launch()
|