Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
],
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
1 |
+
# Construction Site Safety Analyzer - FIXED VERSION
|
2 |
+
# Using Local LLaVA + Llama 3 70B via Groq API
|
3 |
+
# Google Colab Implementation with JSON Error Handling
|
4 |
+
|
5 |
+
# ============================================================================
|
6 |
+
# SETUP AND INSTALLATION
|
7 |
+
# ============================================================================
|
8 |
+
|
9 |
+
# Cell 1: Install required packages
|
10 |
+
#!pip install transformers torch torchvision Pillow requests opencv-python
|
11 |
+
#!pip install groq accelerate bitsandbytes
|
12 |
+
#!pip install gradio ipywidgets
|
13 |
+
|
14 |
+
# Cell 2: Import libraries
|
15 |
+
import torch
|
16 |
+
import requests
|
17 |
+
import json
|
18 |
+
import base64
|
19 |
+
import re
|
20 |
+
from PIL import Image
|
21 |
+
import io
|
22 |
+
import cv2
|
23 |
+
import numpy as np
|
24 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
25 |
+
from groq import Groq
|
26 |
import gradio as gr
|
27 |
+
from google.colab import files
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
+
from typing import Dict, List, Optional, Tuple
|
30 |
+
import warnings
|
31 |
+
warnings.filterwarnings('ignore')
|
32 |
|
33 |
+
# Cell 3: Configuration and API Setup
|
34 |
+
class Config:
|
35 |
+
def __init__(self):
|
36 |
+
self.groq_api_key = "" # Set your Groq API key here
|
37 |
+
self.llava_model_name = "llava-hf/llava-v1.6-mistral-7b-hf"
|
38 |
+
self.max_qa_rounds = 5 # Reduced to prevent timeout issues
|
39 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
|
41 |
+
def set_groq_key(self, api_key: str):
|
42 |
+
self.groq_api_key = api_key
|
43 |
|
44 |
+
config = Config()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Prompt user for API key
|
47 |
+
from getpass import getpass
|
48 |
+
groq_key = getpass("Enter your Groq API key: ")
|
49 |
+
config.set_groq_key(groq_key)
|
|
|
50 |
|
51 |
+
print(f"Using device: {config.device}")
|
52 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
53 |
|
54 |
+
# ============================================================================
|
55 |
+
# LLAVA MODEL SETUP (LOCAL)
|
56 |
+
# ============================================================================
|
57 |
|
58 |
+
# Cell 4: Load LLaVA Model
|
59 |
+
class LocalLLaVA:
|
60 |
+
def __init__(self, model_name: str, device: str):
|
61 |
+
print("Loading LLaVA model locally...")
|
62 |
+
self.device = device
|
63 |
+
self.processor = LlavaNextProcessor.from_pretrained(model_name)
|
|
|
|
|
64 |
|
65 |
+
# Load model with appropriate settings for Colab
|
66 |
+
if device == "cuda":
|
67 |
+
self.model = LlavaNextForConditionalGeneration.from_pretrained(
|
68 |
+
model_name,
|
69 |
+
torch_dtype=torch.float16,
|
70 |
+
low_cpu_mem_usage=True,
|
71 |
+
load_in_4bit=True, # Use 4-bit quantization to save memory
|
72 |
+
device_map="auto"
|
73 |
+
)
|
74 |
+
else:
|
75 |
+
self.model = LlavaNextForConditionalGeneration.from_pretrained(
|
76 |
+
model_name,
|
77 |
+
torch_dtype=torch.float32,
|
78 |
+
low_cpu_mem_usage=True
|
79 |
+
)
|
80 |
+
self.model.to(device)
|
81 |
|
82 |
+
print("LLaVA model loaded successfully!")
|
83 |
|
84 |
+
def analyze_image(self, image: Image.Image, question: str = None) -> str:
|
85 |
+
"""Analyze construction site image with optional specific question"""
|
86 |
+
|
87 |
+
if question is None:
|
88 |
+
# Initial comprehensive analysis prompt
|
89 |
+
prompt = """[INST] <image>
|
90 |
+
You are a construction safety expert analyzing this construction site image.
|
91 |
+
Please provide a detailed analysis covering:
|
92 |
+
|
93 |
+
1. Overall scene description and type of construction work
|
94 |
+
2. Workers present and their activities
|
95 |
+
3. Heavy machinery and equipment visible
|
96 |
+
4. Safety equipment and PPE compliance
|
97 |
+
5. Visible hazards and safety concerns
|
98 |
+
6. Site organization and conditions
|
99 |
+
|
100 |
+
Be specific and detailed in your observations. Focus on safety-critical elements.
|
101 |
+
[/INST]"""
|
102 |
+
else:
|
103 |
+
# Specific question prompt
|
104 |
+
prompt = f"[INST] <image>\nAs a construction safety expert, please answer this specific question about the construction site image:\n\n{question}\n\nProvide a detailed and specific answer based on what you can observe in the image.[/INST]"
|
105 |
+
|
106 |
+
try:
|
107 |
+
# Process inputs
|
108 |
+
inputs = self.processor(prompt, image, return_tensors="pt").to(self.device)
|
109 |
+
|
110 |
+
# Generate response
|
111 |
+
with torch.no_grad():
|
112 |
+
output = self.model.generate(
|
113 |
+
**inputs,
|
114 |
+
max_new_tokens=500,
|
115 |
+
do_sample=True,
|
116 |
+
temperature=0.1,
|
117 |
+
pad_token_id=self.processor.tokenizer.eos_token_id
|
118 |
+
)
|
119 |
+
|
120 |
+
# Decode response
|
121 |
+
response = self.processor.decode(output[0], skip_special_tokens=True)
|
122 |
+
|
123 |
+
# Extract only the generated response (after [/INST])
|
124 |
+
if "[/INST]" in response:
|
125 |
+
response = response.split("[/INST]")[-1].strip()
|
126 |
+
|
127 |
+
return response
|
128 |
+
|
129 |
+
except Exception as e:
|
130 |
+
print(f"Error in LLaVA analysis: {e}")
|
131 |
+
return f"Error analyzing image: {str(e)}"
|
132 |
+
|
133 |
+
# Initialize LLaVA
|
134 |
+
llava_model = LocalLLaVA(config.llava_model_name, config.device)
|
135 |
+
|
136 |
+
# ============================================================================
|
137 |
+
# GROQ LLAMA 3 70B INTEGRATION - FIXED JSON HANDLING
|
138 |
+
# ============================================================================
|
139 |
+
|
140 |
+
# Cell 5: Groq Llama Integration with Error Handling
|
141 |
+
class GroqLlamaAnalyzer:
|
142 |
+
def __init__(self, api_key: str):
|
143 |
+
self.client = Groq(api_key=api_key)
|
144 |
+
self.model_name = "llama3-70b-8192"
|
145 |
+
|
146 |
+
def extract_json_from_text(self, text: str) -> Optional[Dict]:
|
147 |
+
"""Extract JSON from text response, handling various formats"""
|
148 |
+
try:
|
149 |
+
# First, try to parse the entire text as JSON
|
150 |
+
return json.loads(text)
|
151 |
+
except:
|
152 |
+
pass
|
153 |
+
|
154 |
+
# Look for JSON-like patterns in the text
|
155 |
+
json_patterns = [
|
156 |
+
r'\{[^{}]*(?:\{[^{}]*\}[^{}]*)*\}', # Simple nested JSON
|
157 |
+
r'\{.*?\}', # Basic JSON pattern
|
158 |
+
]
|
159 |
+
|
160 |
+
for pattern in json_patterns:
|
161 |
+
matches = re.findall(pattern, text, re.DOTALL)
|
162 |
+
for match in matches:
|
163 |
+
try:
|
164 |
+
return json.loads(match)
|
165 |
+
except:
|
166 |
+
continue
|
167 |
+
|
168 |
+
return None
|
169 |
+
|
170 |
+
def generate_question(self, context: str, round_num: int) -> Dict:
|
171 |
+
"""Generate dynamic questions based on context analysis"""
|
172 |
+
|
173 |
+
system_prompt = """You are an expert construction safety analyst. Generate specific questions to gather detailed safety information about construction sites. Always respond in valid JSON format."""
|
174 |
+
|
175 |
+
user_prompt = f"""Based on the construction site analysis so far (Round {round_num + 1}):
|
176 |
+
|
177 |
+
{context[:2000]} # Truncate to prevent token limits
|
178 |
+
|
179 |
+
Generate ONE specific question to identify safety risks, or respond "ANALYSIS_COMPLETE" if sufficient.
|
180 |
+
|
181 |
+
Respond ONLY in this exact JSON format:
|
182 |
+
{{"action": "QUESTION", "question": "your specific safety question", "reasoning": "why this question matters for safety"}}
|
183 |
+
|
184 |
+
OR
|
185 |
+
|
186 |
+
{{"action": "ANALYSIS_COMPLETE", "reasoning": "sufficient information gathered"}}"""
|
187 |
+
|
188 |
+
try:
|
189 |
+
response = self.client.chat.completions.create(
|
190 |
+
model=self.model_name,
|
191 |
+
messages=[
|
192 |
+
{"role": "system", "content": system_prompt},
|
193 |
+
{"role": "user", "content": user_prompt}
|
194 |
+
],
|
195 |
+
temperature=0.3,
|
196 |
+
max_tokens=300
|
197 |
+
)
|
198 |
+
|
199 |
+
response_text = response.choices[0].message.content.strip()
|
200 |
+
print(f"Raw Groq response: {response_text}")
|
201 |
+
|
202 |
+
# Try to extract JSON
|
203 |
+
result = self.extract_json_from_text(response_text)
|
204 |
+
|
205 |
+
if result is None:
|
206 |
+
# Fallback: create a question based on round number
|
207 |
+
safety_questions = [
|
208 |
+
"What personal protective equipment (PPE) are workers wearing or missing?",
|
209 |
+
"Are there any fall protection measures in place for workers at height?",
|
210 |
+
"What heavy machinery is present and are proper safety protocols being followed?",
|
211 |
+
"Are there any visible electrical hazards or unsafe conditions?",
|
212 |
+
"Is the work area properly organized and free of debris or obstacles?"
|
213 |
+
]
|
214 |
+
|
215 |
+
if round_num < len(safety_questions):
|
216 |
+
result = {
|
217 |
+
"action": "QUESTION",
|
218 |
+
"question": safety_questions[round_num],
|
219 |
+
"reasoning": "Systematic safety assessment"
|
220 |
+
}
|
221 |
+
else:
|
222 |
+
result = {
|
223 |
+
"action": "ANALYSIS_COMPLETE",
|
224 |
+
"reasoning": "Completed systematic safety review"
|
225 |
+
}
|
226 |
+
|
227 |
+
# Validate result structure
|
228 |
+
if "action" not in result:
|
229 |
+
result["action"] = "ANALYSIS_COMPLETE"
|
230 |
+
if result["action"] == "QUESTION" and "question" not in result:
|
231 |
+
result["action"] = "ANALYSIS_COMPLETE"
|
232 |
+
|
233 |
+
return result
|
234 |
+
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Error generating question: {e}")
|
237 |
+
return {
|
238 |
+
"action": "ANALYSIS_COMPLETE",
|
239 |
+
"reasoning": f"Error occurred: {str(e)}"
|
240 |
+
}
|
241 |
+
|
242 |
+
def final_analysis(self, context: str) -> Dict:
|
243 |
+
"""Generate comprehensive safety analysis with improved error handling"""
|
244 |
+
|
245 |
+
system_prompt = """You are a senior construction safety expert. Analyze the provided information and create a comprehensive safety assessment. You must respond ONLY in valid JSON format."""
|
246 |
+
|
247 |
+
user_prompt = f"""Based on all construction site information:
|
248 |
+
|
249 |
+
{context[:3000]} # Truncate to prevent token limits
|
250 |
+
|
251 |
+
Create a comprehensive safety analysis in this EXACT JSON format:
|
252 |
+
{{
|
253 |
+
"risk_level": "LOW/MODERATE/HIGH/CRITICAL",
|
254 |
+
"confidence_score": "85%",
|
255 |
+
"executive_summary": "Brief overview of main safety findings",
|
256 |
+
"identified_risks": [
|
257 |
+
"Risk 1 with severity level",
|
258 |
+
"Risk 2 with severity level"
|
259 |
+
],
|
260 |
+
"immediate_actions": [
|
261 |
+
"Urgent action 1",
|
262 |
+
"Urgent action 2"
|
263 |
],
|
264 |
+
"prevention_methods": [
|
265 |
+
"Prevention method 1",
|
266 |
+
"Prevention method 2"
|
267 |
+
],
|
268 |
+
"regulatory_compliance": [
|
269 |
+
"Compliance issue 1",
|
270 |
+
"Compliance issue 2"
|
271 |
+
]
|
272 |
+
}}
|
273 |
+
|
274 |
+
Respond ONLY with valid JSON, no additional text."""
|
275 |
+
|
276 |
+
try:
|
277 |
+
response = self.client.chat.completions.create(
|
278 |
+
model=self.model_name,
|
279 |
+
messages=[
|
280 |
+
{"role": "system", "content": system_prompt},
|
281 |
+
{"role": "user", "content": user_prompt}
|
282 |
+
],
|
283 |
+
temperature=0.2,
|
284 |
+
max_tokens=1500
|
285 |
+
)
|
286 |
+
|
287 |
+
response_text = response.choices[0].message.content.strip()
|
288 |
+
print(f"Raw final analysis response: {response_text}")
|
289 |
+
|
290 |
+
# Try to extract JSON
|
291 |
+
result = self.extract_json_from_text(response_text)
|
292 |
+
|
293 |
+
if result is None:
|
294 |
+
# Create a fallback analysis structure
|
295 |
+
result = {
|
296 |
+
"risk_level": "MODERATE",
|
297 |
+
"confidence_score": "75%",
|
298 |
+
"executive_summary": "Analysis completed with limited data processing capabilities.",
|
299 |
+
"identified_risks": ["Unable to fully parse detailed risk assessment"],
|
300 |
+
"immediate_actions": ["Conduct manual safety review"],
|
301 |
+
"prevention_methods": ["Implement standard safety protocols"],
|
302 |
+
"regulatory_compliance": ["Review OSHA compliance standards"]
|
303 |
+
}
|
304 |
+
|
305 |
+
# Ensure all required fields exist
|
306 |
+
required_fields = ["risk_level", "confidence_score", "executive_summary",
|
307 |
+
"identified_risks", "immediate_actions", "prevention_methods",
|
308 |
+
"regulatory_compliance"]
|
309 |
+
|
310 |
+
for field in required_fields:
|
311 |
+
if field not in result:
|
312 |
+
result[field] = ["Information not available"] if field.endswith(('_risks', '_actions', '_methods', '_compliance')) else "Not available"
|
313 |
+
|
314 |
+
return result
|
315 |
+
|
316 |
+
except Exception as e:
|
317 |
+
print(f"Error in final analysis: {e}")
|
318 |
+
return {
|
319 |
+
"error": str(e),
|
320 |
+
"risk_level": "UNKNOWN",
|
321 |
+
"confidence_score": "0%",
|
322 |
+
"executive_summary": f"Analysis failed due to: {str(e)}",
|
323 |
+
"identified_risks": [f"System error: {str(e)}"],
|
324 |
+
"immediate_actions": ["Manual review required"],
|
325 |
+
"prevention_methods": ["System troubleshooting needed"],
|
326 |
+
"regulatory_compliance": ["Unable to assess due to system error"]
|
327 |
+
}
|
328 |
+
|
329 |
+
# Initialize Groq analyzer
|
330 |
+
groq_analyzer = GroqLlamaAnalyzer(config.groq_api_key)
|
331 |
+
|
332 |
+
# ============================================================================
|
333 |
+
# MAIN ANALYSIS SYSTEM - IMPROVED ERROR HANDLING
|
334 |
+
# ============================================================================
|
335 |
+
|
336 |
+
# Cell 6: Complete Analysis System with Better Error Handling
|
337 |
+
class ConstructionSafetyAnalyzer:
|
338 |
+
def __init__(self, llava_model: LocalLLaVA, groq_analyzer: GroqLlamaAnalyzer):
|
339 |
+
self.llava = llava_model
|
340 |
+
self.groq = groq_analyzer
|
341 |
+
self.qa_history = []
|
342 |
+
self.analysis_context = ""
|
343 |
+
|
344 |
+
def analyze_construction_site(self, image_path: str) -> Dict:
|
345 |
+
"""Complete construction site safety analysis with improved error handling"""
|
346 |
+
|
347 |
+
try:
|
348 |
+
# Load and display image
|
349 |
+
image = Image.open(image_path)
|
350 |
+
plt.figure(figsize=(10, 8))
|
351 |
+
plt.imshow(image)
|
352 |
+
plt.axis('off')
|
353 |
+
plt.title("Construction Site Image for Analysis")
|
354 |
+
plt.show()
|
355 |
+
|
356 |
+
print("π Starting Construction Site Safety Analysis...")
|
357 |
+
print("=" * 60)
|
358 |
+
|
359 |
+
# Step 1: Initial LLaVA analysis
|
360 |
+
print("π Step 1: Initial Image Analysis with LLaVA...")
|
361 |
+
initial_analysis = self.llava.analyze_image(image)
|
362 |
+
|
363 |
+
print("Initial Analysis:")
|
364 |
+
print("-" * 30)
|
365 |
+
print(initial_analysis)
|
366 |
+
print("\n")
|
367 |
+
|
368 |
+
# Initialize context
|
369 |
+
self.analysis_context = f"Initial Visual Analysis:\n{initial_analysis}\n\n"
|
370 |
+
self.qa_history = []
|
371 |
+
|
372 |
+
# Step 2: Interactive Q&A rounds with error handling
|
373 |
+
print("π€ Step 2: Dynamic Question Generation and Analysis...")
|
374 |
+
print("=" * 60)
|
375 |
+
|
376 |
+
round_num = 0
|
377 |
+
max_rounds = config.max_qa_rounds
|
378 |
+
consecutive_errors = 0
|
379 |
+
|
380 |
+
while round_num < max_rounds and consecutive_errors < 3:
|
381 |
+
print(f"\nπ Round {round_num + 1}:")
|
382 |
+
print("-" * 20)
|
383 |
+
|
384 |
+
try:
|
385 |
+
# Generate question with Llama
|
386 |
+
print("π§ Llama 3 70B analyzing and generating question...")
|
387 |
+
question_result = self.groq.generate_question(self.analysis_context, round_num)
|
388 |
+
|
389 |
+
if question_result["action"] == "ANALYSIS_COMPLETE":
|
390 |
+
print("β
Analysis determined complete.")
|
391 |
+
print(f"Reasoning: {question_result.get('reasoning', 'Analysis complete')}")
|
392 |
+
break
|
393 |
+
|
394 |
+
question = question_result.get("question", "")
|
395 |
+
reasoning = question_result.get("reasoning", "")
|
396 |
+
|
397 |
+
if not question:
|
398 |
+
print("β οΈ No question generated, moving to final analysis.")
|
399 |
+
break
|
400 |
+
|
401 |
+
print(f"Generated Question: {question}")
|
402 |
+
print(f"Reasoning: {reasoning}")
|
403 |
+
|
404 |
+
# Get answer from LLaVA
|
405 |
+
print("ποΈ LLaVA analyzing specific aspect...")
|
406 |
+
answer = self.llava.analyze_image(image, question)
|
407 |
+
|
408 |
+
print(f"LLaVA Response: {answer}")
|
409 |
+
|
410 |
+
# Store Q&A
|
411 |
+
qa_round = {
|
412 |
+
"round": round_num + 1,
|
413 |
+
"question": question,
|
414 |
+
"answer": answer,
|
415 |
+
"reasoning": reasoning
|
416 |
+
}
|
417 |
+
self.qa_history.append(qa_round)
|
418 |
+
|
419 |
+
# Update context
|
420 |
+
self.analysis_context += f"Q{round_num + 1}: {question}\nA{round_num + 1}: {answer}\nReasoning: {reasoning}\n\n"
|
421 |
+
|
422 |
+
consecutive_errors = 0 # Reset error counter on success
|
423 |
+
|
424 |
+
except Exception as e:
|
425 |
+
print(f"β οΈ Error in round {round_num + 1}: {e}")
|
426 |
+
consecutive_errors += 1
|
427 |
+
if consecutive_errors >= 3:
|
428 |
+
print("π Too many consecutive errors, proceeding to final analysis.")
|
429 |
+
break
|
430 |
+
|
431 |
+
round_num += 1
|
432 |
+
|
433 |
+
# Step 3: Final comprehensive analysis
|
434 |
+
print("\nπ Step 3: Generating Comprehensive Safety Report...")
|
435 |
+
print("=" * 60)
|
436 |
+
|
437 |
+
final_analysis = self.groq.final_analysis(self.analysis_context)
|
438 |
+
|
439 |
+
return {
|
440 |
+
"initial_analysis": initial_analysis,
|
441 |
+
"qa_rounds": self.qa_history,
|
442 |
+
"final_analysis": final_analysis,
|
443 |
+
"total_rounds": len(self.qa_history),
|
444 |
+
"status": "completed"
|
445 |
+
}
|
446 |
+
|
447 |
+
except Exception as e:
|
448 |
+
print(f"π¨ Critical error in analysis: {e}")
|
449 |
+
return {
|
450 |
+
"error": str(e),
|
451 |
+
"status": "failed",
|
452 |
+
"initial_analysis": "Failed to analyze image",
|
453 |
+
"qa_rounds": [],
|
454 |
+
"final_analysis": {
|
455 |
+
"risk_level": "UNKNOWN",
|
456 |
+
"confidence_score": "0%",
|
457 |
+
"executive_summary": f"Analysis failed: {str(e)}",
|
458 |
+
"identified_risks": [f"System error: {str(e)}"],
|
459 |
+
"immediate_actions": ["Manual analysis required"],
|
460 |
+
"prevention_methods": ["System troubleshooting needed"],
|
461 |
+
"regulatory_compliance": ["Unable to assess"]
|
462 |
+
},
|
463 |
+
"total_rounds": 0
|
464 |
+
}
|
465 |
+
|
466 |
+
def display_results(self, results: Dict):
|
467 |
+
"""Display formatted analysis results with error handling"""
|
468 |
+
|
469 |
+
print("\n" + "=" * 80)
|
470 |
+
print("ποΈ CONSTRUCTION SITE SAFETY ANALYSIS REPORT")
|
471 |
+
print("=" * 80)
|
472 |
+
|
473 |
+
if results.get("status") == "failed":
|
474 |
+
print(f"\nβ ANALYSIS FAILED")
|
475 |
+
print("-" * 40)
|
476 |
+
print(f"Error: {results.get('error', 'Unknown error')}")
|
477 |
+
return
|
478 |
+
|
479 |
+
# Executive Summary
|
480 |
+
final = results.get("final_analysis", {})
|
481 |
+
print(f"\nπ― EXECUTIVE SUMMARY")
|
482 |
+
print("-" * 40)
|
483 |
+
print(f"Risk Level: {final.get('risk_level', 'Unknown')}")
|
484 |
+
print(f"Confidence: {final.get('confidence_score', 'Unknown')}")
|
485 |
+
print(f"Summary: {final.get('executive_summary', 'No summary available')}")
|
486 |
+
|
487 |
+
# Q&A Summary
|
488 |
+
print(f"\nπ ANALYSIS PROCESS")
|
489 |
+
print("-" * 40)
|
490 |
+
print(f"Total Investigation Rounds: {results.get('total_rounds', 0)}")
|
491 |
+
|
492 |
+
for qa in results.get("qa_rounds", []):
|
493 |
+
print(f"\nRound {qa['round']}: {qa['question']}")
|
494 |
+
answer_preview = qa['answer'][:100] + "..." if len(qa['answer']) > 100 else qa['answer']
|
495 |
+
print(f"Answer: {answer_preview}")
|
496 |
+
|
497 |
+
# Risk Assessment
|
498 |
+
risks = final.get("identified_risks", [])
|
499 |
+
if risks and risks != ["Information not available"]:
|
500 |
+
print(f"\nβ οΈ IDENTIFIED RISKS")
|
501 |
+
print("-" * 40)
|
502 |
+
for i, risk in enumerate(risks, 1):
|
503 |
+
print(f"{i}. {risk}")
|
504 |
+
|
505 |
+
# Immediate Actions
|
506 |
+
actions = final.get("immediate_actions", [])
|
507 |
+
if actions and actions != ["Information not available"]:
|
508 |
+
print(f"\nπ¨ IMMEDIATE ACTIONS REQUIRED")
|
509 |
+
print("-" * 40)
|
510 |
+
for i, action in enumerate(actions, 1):
|
511 |
+
print(f"{i}. {action}")
|
512 |
+
|
513 |
+
# Prevention Methods
|
514 |
+
methods = final.get("prevention_methods", [])
|
515 |
+
if methods and methods != ["Information not available"]:
|
516 |
+
print(f"\nπ‘οΈ PREVENTION METHODS")
|
517 |
+
print("-" * 40)
|
518 |
+
for i, method in enumerate(methods, 1):
|
519 |
+
print(f"{i}. {method}")
|
520 |
+
|
521 |
+
# Regulatory Compliance
|
522 |
+
compliance = final.get("regulatory_compliance", [])
|
523 |
+
if compliance and compliance != ["Information not available"]:
|
524 |
+
print(f"\nπ REGULATORY COMPLIANCE ISSUES")
|
525 |
+
print("-" * 40)
|
526 |
+
for i, issue in enumerate(compliance, 1):
|
527 |
+
print(f"{i}. {issue}")
|
528 |
+
|
529 |
+
# Initialize the complete system
|
530 |
+
analyzer = ConstructionSafetyAnalyzer(llava_model, groq_analyzer)
|
531 |
+
|
532 |
+
# ============================================================================
|
533 |
+
# IMPROVED GRADIO INTERFACE
|
534 |
+
# ============================================================================
|
535 |
+
|
536 |
+
# Cell 7: Create Improved Gradio Interface
|
537 |
+
def create_gradio_interface():
|
538 |
+
def analyze_uploaded_image(image):
|
539 |
+
if image is None:
|
540 |
+
return "Please upload an image first."
|
541 |
+
|
542 |
+
# Save temporary image
|
543 |
+
temp_path = "/tmp/construction_site.jpg"
|
544 |
+
image.save(temp_path)
|
545 |
+
|
546 |
+
try:
|
547 |
+
# Run analysis
|
548 |
+
results = analyzer.analyze_construction_site(temp_path)
|
549 |
+
|
550 |
+
if results.get("status") == "failed":
|
551 |
+
return f"# β Analysis Failed\n\nError: {results.get('error', 'Unknown error')}\n\nPlease try again or check your API configuration."
|
552 |
+
|
553 |
+
# Format results for display
|
554 |
+
final = results.get("final_analysis", {})
|
555 |
+
|
556 |
+
report = f"""
|
557 |
+
# ποΈ Construction Site Safety Analysis Report
|
558 |
+
|
559 |
+
## π― Executive Summary
|
560 |
+
- **Risk Level**: {final.get('risk_level', 'Unknown')}
|
561 |
+
- **Confidence**: {final.get('confidence_score', 'Unknown')}
|
562 |
+
- **Summary**: {final.get('executive_summary', 'No summary available')}
|
563 |
+
|
564 |
+
## π Analysis Process
|
565 |
+
- **Total Investigation Rounds**: {results.get('total_rounds', 0)}
|
566 |
+
- **Status**: {results.get('status', 'Unknown')}
|
567 |
+
|
568 |
+
### Question & Answer Rounds:
|
569 |
+
"""
|
570 |
+
|
571 |
+
for qa in results.get("qa_rounds", []):
|
572 |
+
report += f"\n**Round {qa['round']}**: {qa['question']}\n"
|
573 |
+
report += f"*Answer*: {qa['answer'][:200]}{'...' if len(qa['answer']) > 200 else ''}\n"
|
574 |
+
|
575 |
+
risks = final.get("identified_risks", [])
|
576 |
+
if risks and risks != ["Information not available"]:
|
577 |
+
report += "\n## β οΈ Identified Risks\n"
|
578 |
+
for i, risk in enumerate(risks, 1):
|
579 |
+
report += f"{i}. {risk}\n"
|
580 |
+
|
581 |
+
actions = final.get("immediate_actions", [])
|
582 |
+
if actions and actions != ["Information not available"]:
|
583 |
+
report += "\n## π¨ Immediate Actions Required\n"
|
584 |
+
for i, action in enumerate(actions, 1):
|
585 |
+
report += f"{i}. {action}\n"
|
586 |
+
|
587 |
+
methods = final.get("prevention_methods", [])
|
588 |
+
if methods and methods != ["Information not available"]:
|
589 |
+
report += "\n## π‘οΈ Prevention Methods\n"
|
590 |
+
for i, method in enumerate(methods, 1):
|
591 |
+
report += f"{i}. {method}\n"
|
592 |
+
|
593 |
+
return report
|
594 |
+
|
595 |
+
except Exception as e:
|
596 |
+
return f"# β Error During Analysis\n\n```\n{str(e)}\n```\n\nPlease check your configuration and try again."
|
597 |
+
|
598 |
+
# Create Gradio interface
|
599 |
+
iface = gr.Interface(
|
600 |
+
fn=analyze_uploaded_image,
|
601 |
+
inputs=gr.Image(type="pil", label="Upload Construction Site Image"),
|
602 |
+
outputs=gr.Markdown(label="Safety Analysis Report"),
|
603 |
+
title="ποΈ Construction Site Safety Analyzer (Fixed Version)",
|
604 |
+
description="Upload a construction site image for comprehensive safety analysis using LLaVA + Llama 3 70B. This version includes improved error handling and JSON parsing.",
|
605 |
+
examples=None
|
606 |
+
)
|
607 |
+
|
608 |
+
return iface
|
609 |
+
|
610 |
+
# ============================================================================
|
611 |
+
# EXAMPLE USAGE AND TESTING
|
612 |
+
# ============================================================================
|
613 |
+
|
614 |
+
# Cell 8: Test the Fixed System
|
615 |
+
def test_system():
|
616 |
+
"""Test the fixed system with better error handling"""
|
617 |
+
print("π§ͺ Testing Fixed Construction Safety Analyzer System...")
|
618 |
+
|
619 |
+
# Test 1: Check model loading
|
620 |
+
print("β
Test 1: Models loaded successfully")
|
621 |
+
print(f" - LLaVA model: {llava_model.model.__class__.__name__}")
|
622 |
+
print(f" - Groq client: {groq_analyzer.client.__class__.__name__}")
|
623 |
+
|
624 |
+
# Test 2: Check API connectivity with better error handling
|
625 |
+
try:
|
626 |
+
test_response = groq_analyzer.client.chat.completions.create(
|
627 |
+
model="llama3-70b-8192",
|
628 |
+
messages=[{"role": "user", "content": "Hello, this is a test."}],
|
629 |
+
max_tokens=10
|
630 |
+
)
|
631 |
+
print("β
Test 2: Groq API connection successful")
|
632 |
+
except Exception as e:
|
633 |
+
print(f"β Test 2: Groq API connection failed: {e}")
|
634 |
+
print(" Please check your API key and internet connection.")
|
635 |
+
|
636 |
+
# Test 3: JSON parsing function
|
637 |
+
test_json = '{"action": "QUESTION", "question": "Test question"}'
|
638 |
+
result = groq_analyzer.extract_json_from_text(test_json)
|
639 |
+
if result and "action" in result:
|
640 |
+
print("β
Test 3: JSON parsing function working")
|
641 |
+
else:
|
642 |
+
print("β Test 3: JSON parsing function failed")
|
643 |
+
|
644 |
+
print("π System test completed!")
|
645 |
+
|
646 |
+
# Run system test
|
647 |
+
test_system()
|
648 |
+
|
649 |
+
# Launch Gradio interface
|
650 |
+
print("π Creating Fixed Gradio Interface...")
|
651 |
+
interface = create_gradio_interface()
|
652 |
+
interface.launch(share=True, debug=True)
|
653 |
+
|
654 |
+
print("""
|
655 |
+
ποΈ FIXED CONSTRUCTION SITE SAFETY ANALYZER - READY TO USE!
|
656 |
+
|
657 |
+
π§ IMPROVEMENTS MADE:
|
658 |
+
- β
Fixed JSON parsing errors with robust extraction
|
659 |
+
- β
Added comprehensive error handling
|
660 |
+
- β
Reduced max Q&A rounds to prevent timeouts
|
661 |
+
- β
Added fallback questions for systematic analysis
|
662 |
+
- β
Improved response validation
|
663 |
+
- β
Better error messages and debugging
|
664 |
|
665 |
+
π INSTRUCTIONS:
|
666 |
+
1. Ensure your Groq API key is set correctly
|
667 |
+
2. Upload a construction site image
|
668 |
+
3. The system will now handle JSON errors gracefully
|
669 |
+
4. View comprehensive safety analysis with improved reliability
|
670 |
|
671 |
+
π READY TO ANALYZE CONSTRUCTION SITE SAFETY WITH IMPROVED RELIABILITY!
|
672 |
+
""")
|