random2222 commited on
Commit
722e6c7
·
verified ·
1 Parent(s): 8e69f66

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -50
app.py CHANGED
@@ -1,64 +1,71 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
41
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
 
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
+ **`app.py`**
2
+ ```python
3
  import gradio as gr
4
+ import requests
5
+ import os
6
 
7
+ # Fetch your Groq API key securely from HF Secrets
8
+ groq_api_key = os.getenv("GROQ_API_KEY")
 
 
9
 
10
+ # Path to local business.txt (uploaded in your Space repo)
11
+ business_file = os.path.join(os.path.dirname(__file__), "business.txt")
12
 
13
+ def chat_with_business(message, history):
14
+ try:
15
+ # Read business knowledge from local file
16
+ with open(business_file, "r", encoding="utf-8") as f:
17
+ business_info = f.read().strip()
 
 
 
 
18
 
19
+ # System prompt including business details
20
+ system_prompt = (
21
+ "You are a helpful customer care assistant. "
22
+ "Use only the following business information to answer the user's query:\n\n" +
23
+ business_info +
24
+ "\n\nIf the answer is not in the knowledge, reply 'Yeh information abhi available nahi hai.'"
25
+ )
26
 
27
+ # Prepare Groq API payload
28
+ headers = {
29
+ "Authorization": f"Bearer {groq_api_key}",
30
+ "Content-Type": "application/json"
31
+ }
32
+ payload = {
33
+ "model": "llama3-70b-8192",
34
+ "messages": [
35
+ {"role": "system", "content": system_prompt},
36
+ {"role": "user", "content": message}
37
+ ],
38
+ "temperature": 0.7
39
+ }
40
 
41
+ # Call Groq chat endpoint
42
+ response = requests.post(
43
+ "https://api.groq.com/openai/v1/chat/completions",
44
+ headers=headers,
45
+ json=payload
46
+ )
47
+ response.raise_for_status()
48
+ data = response.json()
49
+ reply = data["choices"][0]["message"]["content"]
50
+ return reply
51
 
52
+ except Exception as e:
53
+ return f"Error: {e}"
 
 
 
 
 
 
54
 
55
+ # Build Gradio interface
56
+ with gr.Blocks(theme="soft") as demo:
57
+ gr.Markdown("## 🌿 My Business Bot")
58
+ gr.Markdown("*Ask anything about your business in Hindi-English*")
59
+ chatbot = gr.Chatbot(elem_id="chatbox", height=400)
60
+ user_input = gr.Textbox(placeholder="Type your question here...", show_label=False)
61
 
62
+ def handle_interaction(message, chat_history):
63
+ bot_reply = chat_with_business(message, chat_history)
64
+ chat_history = chat_history + [(message, bot_reply)]
65
+ return chat_history, ""
66
 
67
+ user_input.submit(handle_interaction, [user_input, chatbot], [chatbot, user_input])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ # Launch app
70
  if __name__ == "__main__":
71
  demo.launch()