Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,166 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
yield response
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
# app.py
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
+
# Initialize variables
|
7 |
+
model = None
|
8 |
+
tokenizer = None
|
9 |
+
device = None
|
10 |
|
11 |
+
# Define function to load model
|
12 |
+
def load_model():
|
13 |
+
global model, tokenizer, device
|
14 |
+
|
15 |
+
# Use GPU if available
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
print(f"Using device: {device}")
|
18 |
+
|
19 |
+
# Load the Phi-2 model
|
20 |
+
model_id = "microsoft/phi-2"
|
21 |
+
|
22 |
+
print("Loading Phi-2 model and tokenizer...")
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
model_id,
|
26 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
27 |
+
device_map="auto" # Better device management for Spaces
|
28 |
+
)
|
29 |
+
print("Model loaded successfully!")
|
30 |
|
31 |
+
# Define inference function
|
32 |
+
def generate_text(prompt, task_type, max_length=300):
|
33 |
+
global model, tokenizer, device
|
34 |
+
|
35 |
+
# If model hasn't been loaded yet, load it
|
36 |
+
if model is None:
|
37 |
+
load_model()
|
38 |
+
|
39 |
+
# Set temperature based on task type
|
40 |
+
temperature_map = {
|
41 |
+
"Math Problem": 0.2,
|
42 |
+
"Science Theory": 0.4,
|
43 |
+
"Coding Question": 0.3,
|
44 |
+
"Reasoning": 0.5,
|
45 |
+
"Creative Writing": 0.8
|
46 |
+
}
|
47 |
+
temperature = temperature_map.get(task_type, 0.5)
|
48 |
+
|
49 |
+
# Enhance the prompt to request step-by-step solutions
|
50 |
+
enhanced_prompt = f"{prompt}\n\nPlease provide a detailed step-by-step solution with clear reasoning."
|
51 |
+
|
52 |
+
# Progress update for UI
|
53 |
+
yield "Generating solution..."
|
54 |
+
|
55 |
+
# Tokenize input
|
56 |
+
inputs = tokenizer(enhanced_prompt, return_tensors="pt").to(device)
|
57 |
+
|
58 |
+
# Generate output
|
59 |
+
with torch.no_grad():
|
60 |
+
outputs = model.generate(
|
61 |
+
**inputs,
|
62 |
+
max_new_tokens=max_length,
|
63 |
+
temperature=temperature,
|
64 |
+
do_sample=True
|
65 |
+
)
|
66 |
+
|
67 |
+
# Decode response
|
68 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
69 |
+
|
70 |
+
# If the response doesn't seem to include steps, add formatting for clarity
|
71 |
+
if "step" not in response.lower() and len(response) > 100:
|
72 |
+
# Split into paragraphs and format as steps
|
73 |
+
paragraphs = [p for p in response.split('\n') if p.strip()]
|
74 |
+
formatted_response = ""
|
75 |
+
|
76 |
+
for i, para in enumerate(paragraphs):
|
77 |
+
if i == 0 and para == enhanced_prompt:
|
78 |
+
continue
|
79 |
+
formatted_response += f"Step {i+1}: {para}\n\n"
|
80 |
+
|
81 |
+
yield formatted_response
|
82 |
+
else:
|
83 |
yield response
|
84 |
|
85 |
+
# Create Gradio interface
|
86 |
+
with gr.Blocks(title="Phi-2 Step-by-Step Solution Generator", theme=gr.themes.Soft()) as demo:
|
87 |
+
gr.Markdown("# 🧠 Phi-2 Step-by-Step Solution Generator")
|
88 |
+
gr.Markdown("""
|
89 |
+
Enter a prompt below and get detailed step-by-step solutions using Microsoft's Phi-2 model.
|
90 |
+
Select the appropriate task type to optimize the model's response.
|
91 |
+
""")
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column(scale=2):
|
95 |
+
prompt_input = gr.Textbox(
|
96 |
+
label="Prompt",
|
97 |
+
placeholder="Enter your question or problem here...",
|
98 |
+
lines=5
|
99 |
+
)
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
task_type = gr.Radio(
|
103 |
+
["Math Problem", "Science Theory", "Coding Question", "Reasoning", "Creative Writing"],
|
104 |
+
label="Task Type (sets optimal temperature)",
|
105 |
+
value="Reasoning"
|
106 |
+
)
|
107 |
+
|
108 |
+
max_length_slider = gr.Slider(
|
109 |
+
minimum=100,
|
110 |
+
maximum=1000,
|
111 |
+
value=300,
|
112 |
+
step=50,
|
113 |
+
label="Maximum Output Length"
|
114 |
+
)
|
115 |
+
|
116 |
+
with gr.Row():
|
117 |
+
generate_button = gr.Button(
|
118 |
+
"✨ Generate Step-by-Step Solution",
|
119 |
+
variant="primary",
|
120 |
+
size="lg"
|
121 |
+
)
|
122 |
+
clear_button = gr.Button("Clear", variant="secondary")
|
123 |
+
|
124 |
+
with gr.Column(scale=3):
|
125 |
+
output_text = gr.Textbox(
|
126 |
+
label="Step-by-Step Solution",
|
127 |
+
lines=15,
|
128 |
+
show_copy_button=True
|
129 |
+
)
|
130 |
+
|
131 |
+
# Examples with different task types
|
132 |
+
with gr.Accordion("Example Prompts", open=False):
|
133 |
+
gr.Examples(
|
134 |
+
examples=[
|
135 |
+
["Solve the quadratic equation: 2x² + 5x - 3 = 0", "Math Problem"],
|
136 |
+
["Explain how photosynthesis works in plants", "Science Theory"],
|
137 |
+
["Write a function in Python to find the Fibonacci sequence up to n terms", "Coding Question"],
|
138 |
+
["Why might increasing minimum wage have both positive and negative economic impacts?", "Reasoning"],
|
139 |
+
["Write a short story about a robot discovering emotions", "Creative Writing"]
|
140 |
+
],
|
141 |
+
inputs=[prompt_input, task_type]
|
142 |
+
)
|
143 |
+
|
144 |
+
# Add functionality to buttons
|
145 |
+
generate_button.click(
|
146 |
+
fn=generate_text,
|
147 |
+
inputs=[prompt_input, task_type, max_length_slider],
|
148 |
+
outputs=output_text
|
149 |
+
)
|
150 |
+
|
151 |
+
# Clear functionality
|
152 |
+
clear_button.click(
|
153 |
+
fn=lambda: ("", "Reasoning"),
|
154 |
+
inputs=[],
|
155 |
+
outputs=[prompt_input, task_type]
|
156 |
+
)
|
157 |
|
158 |
+
# Adding a note about load times
|
159 |
+
gr.Markdown("""
|
160 |
+
> **Note**: The model loads when you submit your first prompt, which may take 1-2 minutes.
|
161 |
+
> Subsequent generations will be much faster.
|
162 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
# Launch the app
|
165 |
if __name__ == "__main__":
|
166 |
+
demo.queue().launch()
|