Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from langchain_text_splitters import CharacterTextSplitter | |
from langchain.chains import RetrievalQA | |
from langchain_community.llms import HuggingFaceEndpoint # Updated import | |
from huggingface_hub import login | |
# 1. Authentication | |
login(token=os.environ.get('HF_TOKEN')) | |
# 2. PDF Processing | |
def create_qa_system(): | |
if not os.path.exists("file.pdf"): | |
raise gr.Error("❗ Upload file.pdf in Files tab") | |
loader = PyMuPDFLoader("file.pdf") | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
texts = text_splitter.split_documents(documents) | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2" | |
) | |
db = FAISS.from_documents(texts, embeddings) | |
# 3. Updated LLM initialization | |
llm = HuggingFaceEndpoint( | |
repo_id="google/flan-t5-base", | |
max_length=256, | |
temperature=0.2, | |
huggingfacehub_api_token=os.environ.get('HF_TOKEN') # Explicit token passing | |
) | |
return RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=db.as_retriever(search_kwargs={"k": 2}) | |
) | |
# 4. Initialize system | |
qa = create_qa_system() | |
# 5. Chat interface | |
def chat_response(message, history): | |
response = qa({"query": message}) | |
return response["result"] | |
gr.ChatInterface(chat_response).launch() |