Spaces:
Sleeping
Sleeping
# app.py | |
import os | |
import gradio as gr | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from langchain_text_splitters import CharacterTextSplitter | |
from langchain.chains import RetrievalQA | |
from langchain_community.llms import HuggingFaceEndpoint | |
from huggingface_hub import login | |
# 1. Authentication with validation | |
if not os.environ.get('HF_TOKEN'): | |
raise RuntimeError("Add HF_TOKEN in Space secrets!") | |
login(token=os.environ.get('HF_TOKEN')) | |
# 2. PDF processing with error handling | |
def create_qa_system(): | |
try: | |
# File check | |
if not os.path.exists("data.pdf"): | |
raise FileNotFoundError("PDF missing") | |
# Load and validate PDF | |
loader = PyMuPDFLoader("data.pdf") | |
documents = loader.load() | |
if len(documents) == 0: | |
raise ValueError("PDF content empty") | |
# Processing | |
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=50) | |
texts = text_splitter.split_documents(documents) | |
embeddings = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2" | |
) | |
db = FAISS.from_documents(texts, embeddings) | |
# Smaller model for free tier | |
llm = HuggingFaceEndpoint( | |
repo_id="google/flan-t5-small", | |
max_length=128, | |
temperature=0.2, | |
huggingfacehub_api_token=os.environ.get('HF_TOKEN') | |
) | |
return RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=db.as_retriever(search_kwargs={"k": 1}) | |
except Exception as e: | |
raise gr.Error(f"Setup failed: {str(e)}") | |
# 3. Initialize system | |
try: | |
qa = create_qa_system() | |
except Exception as e: | |
print(f"β Critical error: {str(e)}") | |
raise | |
# 4. Chat interface with error messages | |
def chat_response(message, history): | |
try: | |
response = qa({"query": message}) | |
return response["result"] | |
except Exception as e: | |
print(f"π¨ User-facing error: {str(e)}") # Detailed log | |
return f"Error: {str(e)}" # User message | |
gr.ChatInterface(chat_response).launch() |