Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
from langchain_community.vectorstores import FAISS
|
@@ -6,86 +5,55 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
6 |
from langchain_community.document_loaders import PyMuPDFLoader
|
7 |
from langchain.text_splitter import CharacterTextSplitter
|
8 |
from langchain.chains import RetrievalQA
|
9 |
-
from langchain_community.llms import HuggingFaceHub
|
10 |
-
import
|
11 |
|
12 |
-
#
|
|
|
13 |
|
14 |
-
#
|
15 |
-
def
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
def load_pdfs(directory="data"):
|
26 |
-
if not os.path.exists(directory):
|
27 |
-
raise FileNotFoundError(f"The directory '{directory}' does not exist.")
|
28 |
|
29 |
-
|
30 |
-
for filename in os.listdir(directory):
|
31 |
-
if filename.endswith(".pdf"):
|
32 |
-
loader = PyMuPDFLoader(os.path.join(directory, filename))
|
33 |
-
docs = loader.load()
|
34 |
-
raw_documents.extend(docs)
|
35 |
-
return raw_documents
|
36 |
-
|
37 |
-
def split_documents(documents):
|
38 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
39 |
-
return text_splitter.split_documents(documents)
|
40 |
-
|
41 |
-
def initialize_qa_system():
|
42 |
-
print("π¦ Extracting PDFs from zip...")
|
43 |
-
extract_pdfs_from_zip()
|
44 |
-
|
45 |
-
print("π Loading PDFs...")
|
46 |
-
raw_docs = load_pdfs()
|
47 |
-
print(f"β
Loaded {len(raw_docs)} raw documents.")
|
48 |
-
|
49 |
-
if len(raw_docs) == 0:
|
50 |
-
raise ValueError("No PDF documents found in the 'data' directory.")
|
51 |
-
|
52 |
-
print("πͺ Splitting documents into chunks...")
|
53 |
-
docs = split_documents(raw_docs)
|
54 |
-
print(f"β
Split into {len(docs)} chunks.")
|
55 |
-
|
56 |
-
print("π§ Generating embeddings...")
|
57 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
58 |
-
|
59 |
-
|
60 |
-
db = FAISS.from_documents(
|
61 |
-
|
62 |
-
|
63 |
-
print("π€ Initializing LLM...")
|
64 |
llm = HuggingFaceHub(
|
65 |
-
repo_id="google/flan-t5-
|
66 |
-
model_kwargs={"temperature": 0.
|
67 |
)
|
68 |
|
69 |
-
|
70 |
llm=llm,
|
71 |
chain_type="stuff",
|
72 |
-
retriever=db.as_retriever(search_kwargs={"k":
|
73 |
)
|
74 |
-
return qa
|
75 |
|
76 |
-
# Initialize
|
77 |
-
|
78 |
|
79 |
-
|
80 |
-
|
|
|
81 |
return response["result"]
|
82 |
|
83 |
-
#
|
84 |
-
|
85 |
-
|
86 |
-
title="PDF
|
87 |
-
description="
|
88 |
-
)
|
89 |
-
|
90 |
-
if __name__ == "__main__":
|
91 |
-
demo.launch()
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
from langchain_community.vectorstores import FAISS
|
|
|
5 |
from langchain_community.document_loaders import PyMuPDFLoader
|
6 |
from langchain.text_splitter import CharacterTextSplitter
|
7 |
from langchain.chains import RetrievalQA
|
8 |
+
from langchain_community.llms import HuggingFaceHub
|
9 |
+
from huggingface_hub import login
|
10 |
|
11 |
+
# 1. Authentication (MUST HAVE)
|
12 |
+
login(token=os.environ.get('HF_TOKEN'))
|
13 |
|
14 |
+
# 2. PDF Processing Function
|
15 |
+
def create_qa_system():
|
16 |
+
# File check
|
17 |
+
if not os.path.exists("data.pdf"):
|
18 |
+
raise gr.Error("β data.pdf not found! Upload it in Space's Files tab")
|
19 |
|
20 |
+
# Load PDF
|
21 |
+
loader = PyMuPDFLoader("data.pdf")
|
22 |
+
documents = loader.load()
|
23 |
|
24 |
+
# Split text
|
25 |
+
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
26 |
+
texts = text_splitter.split_documents(documents)
|
|
|
|
|
|
|
27 |
|
28 |
+
# Create embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
30 |
+
|
31 |
+
# Build vector store
|
32 |
+
db = FAISS.from_documents(texts, embeddings)
|
33 |
+
|
34 |
+
# Initialize LLM (Free-tier compatible)
|
|
|
35 |
llm = HuggingFaceHub(
|
36 |
+
repo_id="google/flan-t5-base", # Changed to smaller model
|
37 |
+
model_kwargs={"temperature": 0.2, "max_length": 256}
|
38 |
)
|
39 |
|
40 |
+
return RetrievalQA.from_chain_type(
|
41 |
llm=llm,
|
42 |
chain_type="stuff",
|
43 |
+
retriever=db.as_retriever(search_kwargs={"k": 2})
|
44 |
)
|
|
|
45 |
|
46 |
+
# 3. Initialize system
|
47 |
+
qa = create_qa_system()
|
48 |
|
49 |
+
# 4. Chat interface
|
50 |
+
def chat(message, history):
|
51 |
+
response = qa({"query": message})
|
52 |
return response["result"]
|
53 |
|
54 |
+
# 5. Launch Gradio
|
55 |
+
gr.ChatInterface(
|
56 |
+
chat,
|
57 |
+
title="PDF Chatbot",
|
58 |
+
description="Upload your PDF in Files tab β‘οΈ Ask questions!",
|
59 |
+
).launch()
|
|
|
|
|
|