random2222 commited on
Commit
6674899
Β·
verified Β·
1 Parent(s): c953d2b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -49
app.py CHANGED
@@ -1,64 +1,88 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
 
 
 
 
 
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ from langchain_community.vectorstores import FAISS
4
+ from langchain_huggingface import HuggingFaceEmbeddings
5
+ from langchain_community.document_loaders import PyMuPDFLoader
6
+ from langchain.text_splitter import CharacterTextSplitter
7
+ from langchain.chains import RetrievalQA
8
+ from langchain_huggingface import HuggingFaceHub
9
+ import zipfile
10
 
11
+ # Extract PDFs from zip file
12
+ def extract_pdfs_from_zip(zip_path="data.zip", extract_to="data"):
13
+ if not os.path.exists(zip_path):
14
+ raise FileNotFoundError(f"Zip file '{zip_path}' not found.")
15
+
16
+ if not os.path.exists(extract_to):
17
+ os.makedirs(extract_to)
18
+
19
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
20
+ zip_ref.extractall(extract_to)
21
 
22
+ def load_pdfs(directory="data"):
23
+ if not os.path.exists(directory):
24
+ raise FileNotFoundError(f"The directory '{directory}' does not exist.")
25
+
26
+ raw_documents = []
27
+ for filename in os.listdir(directory):
28
+ if filename.endswith(".pdf"):
29
+ loader = PyMuPDFLoader(os.path.join(directory, filename))
30
+ docs = loader.load()
31
+ raw_documents.extend(docs)
32
+ return raw_documents
33
 
34
+ def split_documents(documents):
35
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
36
+ return text_splitter.split_documents(documents)
 
 
 
 
 
 
37
 
38
+ def initialize_qa_system():
39
+ print("πŸ“¦ Extracting PDFs from zip...")
40
+ extract_pdfs_from_zip()
41
+
42
+ print("πŸ”„ Loading PDFs...")
43
+ raw_docs = load_pdfs()
44
+ print(f"βœ… Loaded {len(raw_docs)} raw documents.")
45
 
46
+ if len(raw_docs) == 0:
47
+ raise ValueError("No PDF documents found in the 'data' directory.")
48
 
49
+ print("πŸͺ“ Splitting documents into chunks...")
50
+ docs = split_documents(raw_docs)
51
+ print(f"βœ… Split into {len(docs)} chunks.")
52
 
53
+ print("🧠 Generating embeddings...")
54
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
 
 
 
 
 
 
55
 
56
+ print("πŸ“¦ Creating FAISS vector store...")
57
+ db = FAISS.from_documents(docs, embeddings)
58
+ print("βœ… Vector store created successfully!")
59
 
60
+ print("πŸ€– Initializing LLM...")
61
+ llm = HuggingFaceHub(
62
+ repo_id="google/flan-t5-xxl",
63
+ model_kwargs={"temperature": 0.5, "max_length": 512}
64
+ )
65
+
66
+ qa = RetrievalQA.from_chain_type(
67
+ llm=llm,
68
+ chain_type="stuff",
69
+ retriever=db.as_retriever(search_kwargs={"k": 3})
70
+ )
71
+ return qa
72
 
73
+ # Initialize the QA system
74
+ qa_system = initialize_qa_system()
75
+
76
+ def chat_response(message, history):
77
+ response = qa_system({"query": message})
78
+ return response["result"]
79
+
80
+ # Create Gradio interface
81
  demo = gr.ChatInterface(
82
+ fn=chat_response,
83
+ title="PDF Knowledge Chatbot",
84
+ description="Ask questions about the content in your PDF documents"
 
 
 
 
 
 
 
 
 
 
85
  )
86
 
 
87
  if __name__ == "__main__":
88
+ demo.launch()