Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,88 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
from langchain_community.vectorstores import FAISS
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain_huggingface import HuggingFaceHub
|
9 |
+
import zipfile
|
10 |
|
11 |
+
# Extract PDFs from zip file
|
12 |
+
def extract_pdfs_from_zip(zip_path="data.zip", extract_to="data"):
|
13 |
+
if not os.path.exists(zip_path):
|
14 |
+
raise FileNotFoundError(f"Zip file '{zip_path}' not found.")
|
15 |
+
|
16 |
+
if not os.path.exists(extract_to):
|
17 |
+
os.makedirs(extract_to)
|
18 |
+
|
19 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
20 |
+
zip_ref.extractall(extract_to)
|
21 |
|
22 |
+
def load_pdfs(directory="data"):
|
23 |
+
if not os.path.exists(directory):
|
24 |
+
raise FileNotFoundError(f"The directory '{directory}' does not exist.")
|
25 |
+
|
26 |
+
raw_documents = []
|
27 |
+
for filename in os.listdir(directory):
|
28 |
+
if filename.endswith(".pdf"):
|
29 |
+
loader = PyMuPDFLoader(os.path.join(directory, filename))
|
30 |
+
docs = loader.load()
|
31 |
+
raw_documents.extend(docs)
|
32 |
+
return raw_documents
|
33 |
|
34 |
+
def split_documents(documents):
|
35 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
36 |
+
return text_splitter.split_documents(documents)
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
def initialize_qa_system():
|
39 |
+
print("π¦ Extracting PDFs from zip...")
|
40 |
+
extract_pdfs_from_zip()
|
41 |
+
|
42 |
+
print("π Loading PDFs...")
|
43 |
+
raw_docs = load_pdfs()
|
44 |
+
print(f"β
Loaded {len(raw_docs)} raw documents.")
|
45 |
|
46 |
+
if len(raw_docs) == 0:
|
47 |
+
raise ValueError("No PDF documents found in the 'data' directory.")
|
48 |
|
49 |
+
print("πͺ Splitting documents into chunks...")
|
50 |
+
docs = split_documents(raw_docs)
|
51 |
+
print(f"β
Split into {len(docs)} chunks.")
|
52 |
|
53 |
+
print("π§ Generating embeddings...")
|
54 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
print("π¦ Creating FAISS vector store...")
|
57 |
+
db = FAISS.from_documents(docs, embeddings)
|
58 |
+
print("β
Vector store created successfully!")
|
59 |
|
60 |
+
print("π€ Initializing LLM...")
|
61 |
+
llm = HuggingFaceHub(
|
62 |
+
repo_id="google/flan-t5-xxl",
|
63 |
+
model_kwargs={"temperature": 0.5, "max_length": 512}
|
64 |
+
)
|
65 |
+
|
66 |
+
qa = RetrievalQA.from_chain_type(
|
67 |
+
llm=llm,
|
68 |
+
chain_type="stuff",
|
69 |
+
retriever=db.as_retriever(search_kwargs={"k": 3})
|
70 |
+
)
|
71 |
+
return qa
|
72 |
|
73 |
+
# Initialize the QA system
|
74 |
+
qa_system = initialize_qa_system()
|
75 |
+
|
76 |
+
def chat_response(message, history):
|
77 |
+
response = qa_system({"query": message})
|
78 |
+
return response["result"]
|
79 |
+
|
80 |
+
# Create Gradio interface
|
81 |
demo = gr.ChatInterface(
|
82 |
+
fn=chat_response,
|
83 |
+
title="PDF Knowledge Chatbot",
|
84 |
+
description="Ask questions about the content in your PDF documents"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
)
|
86 |
|
|
|
87 |
if __name__ == "__main__":
|
88 |
+
demo.launch()
|