Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
5 |
from langchain_community.document_loaders import PyMuPDFLoader
|
6 |
from langchain_text_splitters import CharacterTextSplitter
|
7 |
from langchain.chains import RetrievalQA
|
8 |
-
from
|
9 |
from huggingface_hub import login
|
10 |
|
11 |
# Authentication
|
@@ -40,14 +40,12 @@ def create_qa_system():
|
|
40 |
# Build vector store
|
41 |
db = FAISS.from_documents(texts, embeddings)
|
42 |
|
43 |
-
# Initialize LLM
|
44 |
llm = HuggingFaceEndpoint(
|
45 |
-
|
46 |
task="text2text-generation",
|
47 |
-
|
48 |
-
|
49 |
-
"max_length": 128
|
50 |
-
},
|
51 |
huggingfacehub_api_token=os.environ.get('HF_TOKEN')
|
52 |
)
|
53 |
|
@@ -73,9 +71,4 @@ def chat_response(message, history):
|
|
73 |
print(f"Error during query: {str(e)}")
|
74 |
return f"⚠️ Error: {str(e)[:100]}"
|
75 |
|
76 |
-
|
77 |
-
gr.ChatInterface(
|
78 |
-
chat_response,
|
79 |
-
title="PDF Chat Assistant",
|
80 |
-
description="Ask questions about your PDF document"
|
81 |
-
).launch()
|
|
|
5 |
from langchain_community.document_loaders import PyMuPDFLoader
|
6 |
from langchain_text_splitters import CharacterTextSplitter
|
7 |
from langchain.chains import RetrievalQA
|
8 |
+
from langchain_huggingface import HuggingFaceEndpoint # Updated import
|
9 |
from huggingface_hub import login
|
10 |
|
11 |
# Authentication
|
|
|
40 |
# Build vector store
|
41 |
db = FAISS.from_documents(texts, embeddings)
|
42 |
|
43 |
+
# Initialize LLM with corrected parameters
|
44 |
llm = HuggingFaceEndpoint(
|
45 |
+
endpoint_url="https://api-inference.huggingface.co/models/google/flan-t5-small",
|
46 |
task="text2text-generation",
|
47 |
+
temperature=0.2, # Direct parameter
|
48 |
+
max_new_tokens=128, # Correct parameter name
|
|
|
|
|
49 |
huggingfacehub_api_token=os.environ.get('HF_TOKEN')
|
50 |
)
|
51 |
|
|
|
71 |
print(f"Error during query: {str(e)}")
|
72 |
return f"⚠️ Error: {str(e)[:100]}"
|
73 |
|
74 |
+
gr.ChatInterface(chat_response).launch()
|
|
|
|
|
|
|
|
|
|