Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,8 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
| 5 |
from langchain_community.document_loaders import PyMuPDFLoader
|
| 6 |
from langchain_text_splitters import CharacterTextSplitter
|
| 7 |
from langchain.chains import RetrievalQA
|
| 8 |
-
from
|
|
|
|
| 9 |
|
| 10 |
def create_qa_system():
|
| 11 |
try:
|
|
@@ -34,19 +35,27 @@ def create_qa_system():
|
|
| 34 |
# Build vector store
|
| 35 |
db = FAISS.from_documents(texts, embeddings)
|
| 36 |
|
| 37 |
-
#
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
"text2text-generation",
|
| 40 |
-
model=
|
| 41 |
-
|
| 42 |
max_length=128,
|
| 43 |
-
temperature=0.2
|
|
|
|
| 44 |
)
|
| 45 |
|
|
|
|
|
|
|
| 46 |
return RetrievalQA.from_chain_type(
|
| 47 |
-
llm=
|
| 48 |
chain_type="stuff",
|
| 49 |
retriever=db.as_retriever(search_kwargs={"k": 2}))
|
|
|
|
| 50 |
except Exception as e:
|
| 51 |
raise gr.Error(f"Initialization failed: {str(e)}")
|
| 52 |
|
|
|
|
| 5 |
from langchain_community.document_loaders import PyMuPDFLoader
|
| 6 |
from langchain_text_splitters import CharacterTextSplitter
|
| 7 |
from langchain.chains import RetrievalQA
|
| 8 |
+
from langchain_community.llms import HuggingFacePipeline
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 10 |
|
| 11 |
def create_qa_system():
|
| 12 |
try:
|
|
|
|
| 35 |
# Build vector store
|
| 36 |
db = FAISS.from_documents(texts, embeddings)
|
| 37 |
|
| 38 |
+
# Initialize local model with LangChain wrapper
|
| 39 |
+
model_name = "google/flan-t5-small"
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 41 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 42 |
+
|
| 43 |
+
pipe = pipeline(
|
| 44 |
"text2text-generation",
|
| 45 |
+
model=model,
|
| 46 |
+
tokenizer=tokenizer,
|
| 47 |
max_length=128,
|
| 48 |
+
temperature=0.2,
|
| 49 |
+
device_map="auto"
|
| 50 |
)
|
| 51 |
|
| 52 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 53 |
+
|
| 54 |
return RetrievalQA.from_chain_type(
|
| 55 |
+
llm=llm,
|
| 56 |
chain_type="stuff",
|
| 57 |
retriever=db.as_retriever(search_kwargs={"k": 2}))
|
| 58 |
+
)
|
| 59 |
except Exception as e:
|
| 60 |
raise gr.Error(f"Initialization failed: {str(e)}")
|
| 61 |
|