Spaces:
Build error
Build error
import gradio as gr | |
import os | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer | |
# Configuration | |
DOCS_DIR = "business_docs" | |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2" | |
MODEL_NAME = "microsoft/phi-2" | |
# Initialize system components | |
def initialize_system(): | |
# Load and process PDFs | |
if not os.path.exists(DOCS_DIR): | |
raise FileNotFoundError(f"'{DOCS_DIR}' folder not found") | |
pdf_files = [os.path.join(DOCS_DIR, f) for f in os.listdir(DOCS_DIR) | |
if f.endswith(".pdf")] | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200 | |
) | |
texts = [] | |
for pdf in pdf_files: | |
loader = PyPDFLoader(pdf) | |
pages = loader.load_and_split(text_splitter) | |
texts.extend(pages) | |
# Create vector store | |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL) | |
vector_store = FAISS.from_documents(texts, embeddings) | |
# Load Phi-2 model with 4-bit quantization | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
trust_remote_code=True, | |
device_map="auto", | |
load_in_4bit=True | |
) | |
return vector_store, model, tokenizer | |
try: | |
vector_store, model, tokenizer = initialize_system() | |
print("System ready with business documents loaded") | |
except Exception as e: | |
raise RuntimeError(f"Initialization failed: {str(e)}") | |
# Response generation | |
def generate_response(query): | |
# Retrieve relevant context | |
docs = vector_store.similarity_search(query, k=3) | |
context = "\n".join([doc.page_content for doc in docs]) | |
# Create custom prompt template | |
prompt = f"""Instruct: Answer the customer's question using only the provided context. | |
If you don't know the answer, say 'I need to check with our team about that.' | |
Context: {context} | |
Question: {query} | |
Answer:""" | |
# Generate response | |
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False).to(model.device) | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=300, | |
temperature=0.2, | |
repetition_penalty=1.2, | |
do_sample=True | |
) | |
# Decode and clean response | |
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
answer = full_text.split("Answer:")[-1].strip() | |
return answer.split("\n\n")[0] # Return first paragraph | |
# Chat interface | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Customer Care Assistant") | |
gr.Markdown("Ask questions about our products/services") | |
chatbot = gr.Chatbot(height=400) | |
msg = gr.Textbox(label="Type your question here...") | |
clear = gr.Button("Clear History") | |
def respond(message, chat_history): | |
try: | |
response = generate_response(message) | |
if not response: | |
response = "I need to verify that information. Please contact [email protected]" | |
except Exception as e: | |
response = "Apologies, I'm experiencing technical difficulties. Please try again later." | |
chat_history.append((message, response)) | |
return "", chat_history | |
msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.launch(server_name="0.0.0.0", server_port=7860) |