tryagain / app.py
random2222's picture
Update app.py
f8c1ecf verified
raw
history blame
4.01 kB
# Updated app.py with torch import and error handling
import gradio as gr
import os
import torch # Missing import added here
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from transformers import AutoModelForCausalLM, AutoTokenizer
# Configuration
DOCS_DIR = "business_docs"
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
MODEL_NAME = "microsoft/phi-2"
def initialize_system():
try:
# Verify documents
if not os.path.exists(DOCS_DIR):
raise FileNotFoundError(f"Missing {DOCS_DIR} folder")
pdf_files = [os.path.join(DOCS_DIR, f)
for f in os.listdir(DOCS_DIR)
if f.endswith(".pdf")]
if not pdf_files:
raise ValueError(f"No PDFs found in {DOCS_DIR}")
# Process documents
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=100
)
texts = []
for pdf in pdf_files:
loader = PyPDFLoader(pdf)
pages = loader.load_and_split(text_splitter)
texts.extend(pages)
# Create embeddings
embeddings = HuggingFaceEmbeddings(
model_name=EMBEDDING_MODEL,
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': False}
)
# Create vector store
vector_store = FAISS.from_documents(texts, embeddings)
# Load Phi-2 model
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
padding_side="left"
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
trust_remote_code=True,
device_map="auto",
load_in_4bit=True,
torch_dtype=torch.float16
)
return vector_store, model, tokenizer
except Exception as e:
raise RuntimeError(f"Initialization failed: {str(e)}")
try:
vector_store, model, tokenizer = initialize_system()
print("βœ… System initialized successfully")
except Exception as e:
print(f"❌ Initialization error: {str(e)}")
raise
def generate_response(query):
try:
# Retrieve context
docs = vector_store.similarity_search(query, k=2)
context = "\n".join([d.page_content for d in docs])
# Phi-2 optimized prompt
prompt = f"""<|system|>
You are a customer service assistant. Answer ONLY using the context below.
Keep responses under 3 sentences. If unsure, say "I'll check with the team".
Context: {context}</s>
<|user|>
{query}</s>
<|assistant|>"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("<|assistant|>")[-1].strip()
except Exception as e:
return "I'm having trouble answering that. Please try again later."
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Customer Support Chatbot")
chatbot = gr.Chatbot(height=400)
msg = gr.Textbox(label="Your question", placeholder="Type here...")
clear = gr.Button("Clear History")
def respond(message, history):
response = generate_response(message)
return response
msg.submit(respond, [msg, chatbot], chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch(server_port=7860)