Spaces:
Build error
Build error
import os | |
import gradio as gr | |
import torch | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
# Configuration | |
DOCS_DIR = "business_docs" | |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2" | |
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" | |
# System Initialization | |
def initialize_system(): | |
# Validate documents folder | |
if not os.path.exists(DOCS_DIR): | |
raise FileNotFoundError(f"Business documents folder '{DOCS_DIR}' not found") | |
# Load and process PDFs | |
pdf_files = [os.path.join(DOCS_DIR, f) for f in os.listdir(DOCS_DIR) if f.endswith(".pdf")] | |
if not pdf_files: | |
raise ValueError(f"No PDF files found in {DOCS_DIR} folder") | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200 | |
) | |
documents = [] | |
for pdf_path in pdf_files: | |
loader = PyPDFLoader(pdf_path) | |
documents.extend(loader.load_and_split(text_splitter)) | |
# Create embeddings | |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL) | |
vector_store = FAISS.from_documents(documents, embeddings) | |
# Quantization config | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.float16, | |
) | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
quantization_config=bnb_config, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
return vector_store, model, tokenizer | |
# Initialize system components | |
try: | |
vector_store, model, tokenizer = initialize_system() | |
print("β System initialized with business documents") | |
except Exception as e: | |
print(f"β Initialization failed: {str(e)}") | |
raise | |
# Response Generation | |
def generate_response(query): | |
try: | |
# Retrieve relevant context | |
docs = vector_store.similarity_search(query, k=3) | |
context = "\n".join([doc.page_content for doc in docs]) | |
# Create formatted prompt | |
prompt = f"""<|system|> | |
You are a customer support assistant. Answer ONLY using the provided business documents. | |
If the answer isn't in the documents, respond: "I don't have that information." | |
Context: {context}</s> | |
<|user|> | |
{query}</s> | |
<|assistant|> | |
""" | |
# Generate response | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate( | |
inputs.input_ids, | |
max_new_tokens=512, | |
temperature=0.3, | |
do_sample=True, | |
pad_token_id=tokenizer.eos_token_id | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract only the assistant's response | |
return response.split("<|assistant|>")[-1].strip() | |
except Exception as e: | |
return f"β οΈ Error: {str(e)}" | |
# Chat Interface | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# π Business Document Assistant") | |
with gr.Row(): | |
gr.Image("https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png", | |
width=100) | |
gr.Markdown("Ask questions about our policies, products, and services!") | |
chatbot = gr.Chatbot(height=400) | |
msg = gr.Textbox(label="Your Question", placeholder="Type your question here...") | |
clear = gr.Button("Clear History") | |
def respond(message, chat_history): | |
response = generate_response(message) | |
chat_history.append((message, response)) | |
return "", chat_history | |
msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |