Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,56 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
3 |
-
|
|
|
|
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
-
from
|
7 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer,
|
8 |
|
9 |
# Configuration
|
10 |
-
DOCS_DIR = "business_docs"
|
11 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
12 |
-
MODEL_NAME = "
|
13 |
|
14 |
-
#
|
15 |
def initialize_system():
|
16 |
-
#
|
17 |
if not os.path.exists(DOCS_DIR):
|
18 |
raise FileNotFoundError(f"Business documents folder '{DOCS_DIR}' not found")
|
19 |
-
|
|
|
20 |
pdf_files = [os.path.join(DOCS_DIR, f) for f in os.listdir(DOCS_DIR) if f.endswith(".pdf")]
|
21 |
if not pdf_files:
|
22 |
raise ValueError(f"No PDF files found in {DOCS_DIR} folder")
|
23 |
|
24 |
-
# Process documents
|
25 |
text_splitter = RecursiveCharacterTextSplitter(
|
26 |
chunk_size=1000,
|
27 |
chunk_overlap=200
|
28 |
)
|
29 |
|
30 |
-
|
31 |
-
for
|
32 |
-
loader = PyPDFLoader(
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# Create vector store
|
37 |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
38 |
-
vector_store = FAISS.from_documents(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
# Load model
|
41 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
42 |
model = AutoModelForCausalLM.from_pretrained(
|
43 |
MODEL_NAME,
|
|
|
44 |
device_map="auto",
|
45 |
-
|
46 |
)
|
47 |
|
48 |
return vector_store, model, tokenizer
|
@@ -50,52 +58,66 @@ def initialize_system():
|
|
50 |
# Initialize system components
|
51 |
try:
|
52 |
vector_store, model, tokenizer = initialize_system()
|
53 |
-
print("System initialized
|
54 |
except Exception as e:
|
55 |
-
print(f"Initialization
|
56 |
raise
|
57 |
|
58 |
-
# Response
|
59 |
def generate_response(query):
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
outputs = model.generate(
|
75 |
-
**inputs,
|
76 |
-
max_new_tokens=500,
|
77 |
-
temperature=0.3,
|
78 |
-
do_sample=True
|
79 |
-
)
|
80 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("[/INST]")[-1].strip()
|
81 |
|
82 |
-
# Chat
|
83 |
-
with gr.Blocks() as demo:
|
84 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
chatbot = gr.Chatbot(
|
87 |
-
msg = gr.Textbox(label="Type your question")
|
88 |
clear = gr.Button("Clear History")
|
89 |
|
90 |
def respond(message, chat_history):
|
91 |
-
|
92 |
-
response = generate_response(message)
|
93 |
-
except Exception as e:
|
94 |
-
response = "Sorry, I'm having trouble answering right now. Please try again later."
|
95 |
chat_history.append((message, response))
|
96 |
return "", chat_history
|
97 |
|
98 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
99 |
clear.click(lambda: None, None, chatbot, queue=False)
|
100 |
|
101 |
-
|
|
|
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
9 |
|
10 |
# Configuration
|
11 |
+
DOCS_DIR = ".business_docs"
|
12 |
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
13 |
+
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
14 |
|
15 |
+
# System Initialization
|
16 |
def initialize_system():
|
17 |
+
# Validate documents folder
|
18 |
if not os.path.exists(DOCS_DIR):
|
19 |
raise FileNotFoundError(f"Business documents folder '{DOCS_DIR}' not found")
|
20 |
+
|
21 |
+
# Load and process PDFs
|
22 |
pdf_files = [os.path.join(DOCS_DIR, f) for f in os.listdir(DOCS_DIR) if f.endswith(".pdf")]
|
23 |
if not pdf_files:
|
24 |
raise ValueError(f"No PDF files found in {DOCS_DIR} folder")
|
25 |
|
|
|
26 |
text_splitter = RecursiveCharacterTextSplitter(
|
27 |
chunk_size=1000,
|
28 |
chunk_overlap=200
|
29 |
)
|
30 |
|
31 |
+
documents = []
|
32 |
+
for pdf_path in pdf_files:
|
33 |
+
loader = PyPDFLoader(pdf_path)
|
34 |
+
documents.extend(loader.load_and_split(text_splitter))
|
35 |
+
|
36 |
+
# Create embeddings
|
|
|
37 |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
|
38 |
+
vector_store = FAISS.from_documents(documents, embeddings)
|
39 |
+
|
40 |
+
# Quantization config
|
41 |
+
bnb_config = BitsAndBytesConfig(
|
42 |
+
load_in_4bit=True,
|
43 |
+
bnb_4bit_quant_type="nf4",
|
44 |
+
bnb_4bit_compute_dtype=torch.float16,
|
45 |
+
)
|
46 |
|
47 |
+
# Load model and tokenizer
|
48 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
49 |
model = AutoModelForCausalLM.from_pretrained(
|
50 |
MODEL_NAME,
|
51 |
+
quantization_config=bnb_config,
|
52 |
device_map="auto",
|
53 |
+
trust_remote_code=True
|
54 |
)
|
55 |
|
56 |
return vector_store, model, tokenizer
|
|
|
58 |
# Initialize system components
|
59 |
try:
|
60 |
vector_store, model, tokenizer = initialize_system()
|
61 |
+
print("✅ System initialized with business documents")
|
62 |
except Exception as e:
|
63 |
+
print(f"❌ Initialization failed: {str(e)}")
|
64 |
raise
|
65 |
|
66 |
+
# Response Generation
|
67 |
def generate_response(query):
|
68 |
+
try:
|
69 |
+
# Retrieve relevant context
|
70 |
+
docs = vector_store.similarity_search(query, k=3)
|
71 |
+
context = "\n".join([doc.page_content for doc in docs])
|
72 |
+
|
73 |
+
# Create formatted prompt
|
74 |
+
prompt = f"""<|system|>
|
75 |
+
You are a customer support assistant. Answer ONLY using the provided business documents.
|
76 |
+
If the answer isn't in the documents, respond: "I don't have that information."
|
77 |
+
|
78 |
+
Context: {context}</s>
|
79 |
+
<|user|>
|
80 |
+
{query}</s>
|
81 |
+
<|assistant|>
|
82 |
+
"""
|
83 |
+
|
84 |
+
# Generate response
|
85 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
86 |
+
outputs = model.generate(
|
87 |
+
inputs.input_ids,
|
88 |
+
max_new_tokens=512,
|
89 |
+
temperature=0.3,
|
90 |
+
do_sample=True,
|
91 |
+
pad_token_id=tokenizer.eos_token_id
|
92 |
+
)
|
93 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
94 |
+
|
95 |
+
# Extract only the assistant's response
|
96 |
+
return response.split("<|assistant|>")[-1].strip()
|
97 |
|
98 |
+
except Exception as e:
|
99 |
+
return f"⚠️ Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# Chat Interface
|
102 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
103 |
+
gr.Markdown("# 📚 Business Document Assistant")
|
104 |
+
|
105 |
+
with gr.Row():
|
106 |
+
gr.Image("https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png",
|
107 |
+
width=100)
|
108 |
+
gr.Markdown("Ask questions about our policies, products, and services!")
|
109 |
|
110 |
+
chatbot = gr.Chatbot(height=400)
|
111 |
+
msg = gr.Textbox(label="Your Question", placeholder="Type your question here...")
|
112 |
clear = gr.Button("Clear History")
|
113 |
|
114 |
def respond(message, chat_history):
|
115 |
+
response = generate_response(message)
|
|
|
|
|
|
|
116 |
chat_history.append((message, response))
|
117 |
return "", chat_history
|
118 |
|
119 |
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
120 |
clear.click(lambda: None, None, chatbot, queue=False)
|
121 |
|
122 |
+
if __name__ == "__main__":
|
123 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|